22 research outputs found

    Analysis of machine perfusion benefits in kidney grafts: a preclinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Machine perfusion (MP) has potential benefits for marginal organs such as from deceased from cardiac death donors (DCD). However, there is still no consensus on MP benefits. We aimed to determine machine perfusion benefits on kidney grafts.</p> <p>Methods</p> <p>We evaluated kidney grafts preserved in ViaspanUW or KPS solutions either by CS or MP, in a DCD pig model (60 min warm ischemia + 24 h hypothermic preservation). Endpoints were: function recovery, quality of function during follow up (3 month), inflammation, fibrosis, animal survival.</p> <p>Results</p> <p>ViaspanUW-CS animals did not recover function, while in other groups early follow up showed similar values for kidney function. Alanine peptidase and β-NAG activities in the urine were higher in CS than in MP groups. Oxydative stress was lower in KPS-MP animals. Histology was improved by MP over CS. Survival was 0% in ViaspanUW-CS and 60% in other groups. Chronic inflammation, epithelial-to-mesenchymal transition and fibrosis were lowest in KPS-MP, followed by KPS-CS and ViaspanUW-MP.</p> <p>Conclusions</p> <p>With ViaspanUW, effects of MP are obvious as only MP kidney recovered function and allowed survival. With KPS, the benefits of MP over CS are not directly obvious in the early follow up period and only histological analysis, urinary tubular enzymes and red/ox status was discriminating. Chronic follow-up was more conclusive, with a clear superiority of MP over CS, independently of the solution used. KPS was proven superior to ViaspanUW in each preservation method in terms of function and outcome. In our pre-clinical animal model of DCD transplantation, MP offers critical benefits.</p

    New Antibody-Free Mass Spectrometry-Based Quantification Reveals That C9ORF72 Long Protein Isoform Is Reduced in the Frontal Cortex of Hexanucleotide-Repeat Expansion Carriers

    Get PDF
    Frontotemporal dementia (FTD) is a fatal neurodegenerative disease characterized by behavioral and language disorders. The main genetic cause of FTD is an intronic hexanucleotide repeat expansion (G4C2)n in the C9ORF72 gene. A loss of function of the C9ORF72 protein associated with the allele-specific reduction of C9ORF72 expression is postulated to contribute to the disease pathogenesis. To better understand the contribution of the loss of function to the disease mechanism, we need to determine precisely the level of reduction in C9ORF72 long and short isoforms in brain tissue from patients with C9ORF72 mutations. In this study, we developed a sensitive and robust mass spectrometry (MS) method for quantifying C9ORF72 isoform levels in human brain tissue without requiring antibody or affinity reagent. An optimized workflow based on surfactant-aided protein extraction and pellet digestion was established for optimal recovery of the two isoforms in brain samples. Signature peptides, common or specific to the isoforms, were targeted in brain extracts by multiplex MS through the parallel reaction monitoring mode on a Quadrupole–Orbitrap high resolution mass spectrometer. The assay was successfully validated and subsequently applied to frontal cortex brain samples from a cohort of FTD patients with C9ORF72 mutations and neurologically normal controls without mutations. We showed that the C9ORF72 short isoform in the frontal cortices is below detection threshold in all tested individuals and the C9ORF72 long isoform is significantly decreased in C9ORF72 mutation carriers

    Trans ε viniferin decreases amyloid deposits and inflammation in a mouse transgenic Alzheimer model

    No full text
    International audienceAs Alzheimer's disease (AD) induces several cellular and molecular damages, it could be interesting to use multi-target molecules for therapeutics. We previously published that trans ε-viniferin induced the disaggregation of Aβ42 peptide and inhibited the inflammatory response in primary cellular model of AD. Here, effects of this stilbenoid were evaluated in transgenic APPswePS1dE9 mice. We report that trans ε-viniferin could go through the blood brain barrier, reduces size and density of amyloid deposits and decreases reactivity of astrocytes and microglia, after a weekly intraperitoneal injection at 10 mg/kg from 3 to 6 months of age

    Tri-methylation of H3K79 is decreased in TGF-β1-induced epithelial-to-mesenchymal transition in lung cancer

    No full text
    International audienceBackground : The epithelial-to-mesenchymal transition (EMT) enables epithelial cancer cells to acquire mesenchymal features and contributes to metastasis and resistance to treatment. This process involves epigenetic reprogramming for gene expression. We explored global histone modifications during TGF-β1-induced EMT in two non-small cell lung cancer (NSCLC) cell lines and tested different epigenetic treatment to modulate or partially reverse EMT.Results: Loss of classical epithelial markers and gain of mesenchymal markers were verified in A549 and H358 cell lines during TGF-β1-induced EMT. In addition, we noticed increased expression of the axonal guidance protein semaphorin 3C (SEMA3C) and PD-L1 (programmed death-ligand 1) involved in the inhibition of the immune system, suggesting that both SEMA3C and PD-L1 could be the new markers of TGF-β1-induced EMT. H3K79me3 and H2BK120me1 were decreased in A549 and H358 cell lines after a 48-h TGF-β1 treatment, as well as H2BK120ac in A549 cells. However, decreased H3K79me3 was not associated with expression of the histone methyltransferase DOT1L. Furthermore, H3K79me3 was decreased in tumors compared in normal tissues and not associated with cell proliferation. Associations of histone deacetylase inhibitor (SAHA) with DOT1L inhibitors (EPZ5676 or SGC0946) or BET bromodomain inhibitor (PFI-1) were efficient to partially reverse TGF-β1 effects by decreasing expression of PD-L1, SEMA3C, and its receptor neuropilin-2 (NRP2) and by increasing epithelial markers such as E-cadherin.Conclusion : Histone methylation was modified during EMT, and combination of epigenetic compounds with conventional or targeted chemotherapy might contribute to reduce metastasis and to enhance clinical responses

    MEOX2 Transcription Factor Is Involved in Survival and Adhesion of Glioma Stem-like Cells

    No full text
    The high expression of MEOX2 transcription factor is closely associated with poor overall survival in glioma. MEOX2 has recently been described as an interesting prognostic biomarker, especially for lower grade glioma. MEOX2 has never been studied in glioma stem-like cells (GSC), responsible for glioma recurrence. The aim of our study was to investigate the role of MEOX2 in GSC. Loss of function approach using siRNA was used to assess the impact of MEOX2 on GSC viability and stemness phenotype. MEOX2 was localized in the nucleus and its expression was heterogeneous between GSCs. MEOX2 expression depends on the methylation state of its promoter and is strongly associated with IDH mutations. MEOX2 is involved in cell proliferation and viability regulation through ERK/MAPK and PI3K/AKT pathways. MEOX2 loss of function correlated with GSC differentiation and acquisition of neuronal lineage characteristics. Besides, inhibition of MEOX2 is correlated with increased expression of CDH10 and decreased pFAK. In this study, we unraveled, for the first time, MEOX2 contribution to cell viability and proliferation through AKT/ERK pathway and its potential involvement in phenotype and adhesion properties of GSC

    Direct Thrombin Inhibitor Prevents Delayed Graft Function in a Porcine Model of Renal Transplantation

    No full text
    Chantier qualité GABackground. Kidney transplantations from donors after cardiac arrest (DCA) are characterized by an increase in the occurrence of delayed graft function and primary nonfunction. In this study, Melagatran, a selective reversible direct thrombin inhibitor was used to limit renal injury in a DCA pig kidney transplantation model. Methods. We used a porcine model of DCA to study the effects of treatment with Melagatran in the peri-conservation period. Thromboelastography was used to check Melagatran antithrombin effect on in vitro clot formation. Reverse-transcriptase polymerase chain reaction was used to analyze the peripheral immune cells activation status. Renal function and morphologic study were performed at days 1 and 7. Finally, we analyzed the mechanisms of Melagatran protection on kidney microvasculature primary endothelial cells. Results. Prolongation of coagulation time (Ex-Tem) was observed 10 min after injection; however, Melagatran did not modulate increases of thrombin-antithrombin complexes following reperfusion. Melagatran significant treatment lowered the proinflammatory status of circulating immune cells. Animal's survival was increased in Melagatran-treated groups (9 of 10 in Melagatran groups vs. 4 of 10 in controls at day 7). Renal injury and inflammation were also significantly reduced in treated groups. We also demonstrated a direct protective effect of Melagatran against endothelial cell activation and inflammation in vitro. Conclusion. Direct thrombin inhibitor administration in the periconservation period improved graft outcome and reduced renal injury in a model of DCA

    Pathological and Molecular Characteristics of Colorectal Cancer with Brain Metastases

    No full text
    Background: Colorectal cancers (CRC) with brain metastases (BM) are scarcely described. The main objective of this study was to determine the molecular profile of CRC with BM. Methods: We included 82 CRC patients with BM. KRAS, NRAS, BRAF and mismatch repair (MMR) status were investigated on primary tumors (n = 82) and BM (n = 38). ALK, ROS1, cMET, HER-2, PD-1, PD-L1, CD3 and CD8 status were evaluated by immunohistochemistry, and when recommended, by fluorescence in situ hybridization. Results: In primary tumors, KRAS, NRAS and BRAF mutations were observed in 56%, 6%, and 6% of cases, respectively. No ROS1, ALK and cMET rearrangement was detected. Only one tumor presented HER-2 amplification. Molecular profiles were mostly concordant between BM and paired primary tumors, except for 9% of discordances for RAS mutation. CD3, CD8, PD-1 and PD-L1 expressions presented some discordance between primary tumors and BM. In multivariate analysis, multiple BM, lung metastases and PD-L1+ tumor were predictive of poor overall survival. Conclusions: CRCs with BM are associated with high frequency of RAS mutations and significant discordance for RAS mutational status between BM and paired primary tumors. Multiple BM, lung metastases and PD-L1+ have been identified as prognostic factors and can guide therapeutic decisions for CRC patients with BM
    corecore