59 research outputs found

    Reassignment of the murine 3'TRDD1 recombination signal sequence.

    Get PDF
    T cell receptor genes are assembled in developing T lymphocytes from discrete V, D, and J genes by a site-specific somatic rearrangement mechanism. A flanking recombination signal, composed of a conserved heptamer and a semiconserved nonamer separated by 12 or 23 variable nucleotides, targets the activity of the rearrangement machinery to the adjoining V, D, and J genes. Following the rearrangement of V, D, or J genes, their respective recombination signals are ligated together. Although these signal joints are allegedly invariant, created by the head-to-head abuttal of the heptamers, some do exhibit junctional diversity. Recombination signals were initially identified by comparison and alignment of germ-line sequences with the sequence of rearranged genes. However, their overall low level of sequence conservation makes their characterization solely from sequence data difficult. Recently, computational analysis unraveled correlations between nucleotides at several positions scattered within the spacer and recombination activity, so that it is now possible to identify putative recombination signals and determine and predict their recombination efficiency. In this paper, we analyzed the variability introduced in signal joints generated after rearrangement of the TRDD1 and TRDD2 genes in murine thymocytes. The recurrent presence of identical nucleotides inserted in these signal joints led us to reconsider the location and sequence of the TRDD1 recombination signal. By combining molecular characterization and computational analysis, we show that the functional TRDD1 recombination signal is shifted inside the putative coding sequence of the TRDD1 gene and, consequently, that this gene is shorter than indicated in the databases

    Enhanced susceptibility of T lymphocytes to oxidative stress in the absence of the cellular prion protein.: PrPC and oxidative stress in T lymphocytes

    Get PDF
    International audienceThe cellular prion glycoprotein (PrP(C)) is ubiquitously expressed but its physiologic functions remain enigmatic, particularly in the immune system. Here, we demonstrate in vitro and in vivo that PrP(C) is involved in T lymphocytes response to oxidative stress. By monitoring the intracellular level of reduced glutathione, we show that PrP(-/-) thymocytes display a higher susceptibility to H(2)O(2) exposure than PrP(+/+) cells. Furthermore, we find that in mice fed with a restricted diet, a regimen known to increase the intracellular level of ROS, PrP(-/-) thymocytes are more sensitive to oxidative stress. PrP(C) function appears to be specific for oxidative stress, since no significant differences are observed between PrP(-/-) and PrP(+/+) mice exposed to other kinds of stress. We also show a marked evolution of the redox status of T cells throughout differentiation in the thymus. Taken together, our results clearly ascribe to PrP(C) a protective function in thymocytes against oxidative stress

    Long-term immunomodulatory effects of radiation exposure

    No full text
    International audienc

    Long-term immunomodulatory effects of radiation exposure

    No full text
    International audienc

    Long-term immuno-modulatory effects of ionizing radiation

    No full text
    National audienc

    The Immune System in Cancer Prevention, Development and Therapy

    No full text
    International audienceThe immune system plays a pivotal role in the maintenance of the integrity of an organism. Besides the protection against pathogens, it is strongly involved in cancer prevention, development and defense. This review focuses on how the immune system protects against infections and trauma and on its role in cancer development and disease. Focus is set on the interactions of the innate and adaptive immune system and tumors. The role of IFN-gamma as a pleiotropic cytokine that plays a very important role at the interface of innate and adaptive immune systems in tumor development and induction of anti-tumor immune responses is outlined. Further, immune cells as prognostic and predictive markers of cancer will be discussed. Data are provided that even the brain as immune privileged organ is subjected to immune surveillance and consequently also brain tumors. Immune therapeutic approaches for glioblastoma multiforme, the most frequent and malignant brain tumor, based on vaccination with dendritic cells are outlined and application of hyperthermia in form of magnetic nanoparticles is discussed. We conclude that the immune system and developing tumors are intimately intertwined. Anti-tumor immune responses can be prominently boosted by multimodal therapies aiming on the one hand to induce immunogenic tumor cell death forms and on the other hand to actively counteract the immune suppressive microenvironment based on the tumor itself

    T cell receptor Vβ8.2 gene germ-line transcription: An early event of lymphocyte differentiation

    No full text
    International audienceRearrangement of the T cell antigen receptor (TCR) beta chain genes is highly regulated in both a developmental and a tissue-specific manner. T cell precursors originate from the yolk sac or fetal liver during gestation and from the bone marrow during adulthood. They initiate the recombination of TCR genes primarily during differentiation in the thymus. It has previously been suggested that transcription of immunoglobulin genes in germ-line configuration is linked to recombination events within these loci. Here, we examine whether germ-line transcription of TCR variable genes coincides with their rearrangement or whether it marks even earlier stages of T lymphocyte development. During gestation, we found V beta 8.2 germ-line transcripts in the fetal liver and the fetal thymus, but not in the yolk sac. This transcription precedes V beta 8.2 to D beta J beta rearrangement. In adult animals, we found these transcripts in the thymus, the spleen, the liver and the bone marrow. However, in the liver, this transcription is dependent on the presence of mature lymphocytes. This transcription does not happen in non-lymphoid cells. In the B lymphocyte lineage, V beta 8.2 germ-line transcripts are detected only in the earliest stages of differentiation (pre-pro- and pro-B cells), but not in pre-B cells and mature B lymphocytes. Altogether, our results show that transcription of the unrearranged V beta 8.2 gene is an early event of lymphocyte development, taking place in lymphocyte precursors, long before V beta 8.2 rearrangement

    p53-dependent apoptosis and transcription of p21waf/cip1/sdi1 in SCID mice following gamma-irradiation.

    No full text
    International audienceThe recruitment and activation of DNA-repair mechanisms at the sites of DNA-damage after exposure of cells to genotoxic stress are poorly understood. The DNA-dependent kinase (DNA-PK) was considered to be a likely candidate for initiating these events because of the conditions required for its activation, its phosphorylation of p53 in vitro and the extreme radiosensitivity induced by its inactivation in vivo. We analyzed irradiation-induced p53-activation in SCID mice, which lack DNA-PK activity, and found that p53-dependent apoptosis and p21waf/cip1/sdi1 transcription in these animals are at least as efficient as in wild-type mice. Thus, our results show that DNA-PK is not the main sensor for genotoxic stress and is not required for p53 activation. In fact, they rather suggest that DNA-PK may play a role in p53 down-regulation

    Islet-specific T-cell clones from nonobese diabetic mice express heterogeneous T-cell receptors.

    No full text
    International audienceNonobese diabetic (NOD) mice spontaneously develop a T-cell-mediated autoimmune disease that is similar in many respects to insulin-dependent diabetes mellitus in humans. T-cell clones that specifically recognize pancreatic islet cell antigens can be derived from NOD mice, and most of these have been diabetogenic upon transfer to healthy recipients. We report herein the sequences of the T-cell receptor alpha and beta chains from four NOD-derived, islet-specific clones. The sequences are quite heterogeneous--in the junctional regions, specifically--so there seems to be little hope for treating this disease with specific anti-T-cell receptor reagents. This result contrasts with the strikingly restricted junctional region sequences reported for the receptors on clones derived from mice with experimental allergic encephalomyelitis, another T-cell-mediated autoimmune disease. We discuss possible explanations for this difference

    Junctional diversity in signal joints from T cell receptor beta and delta loci via terminal deoxynucleotidyl transferase and exonucleolytic activity.

    No full text
    International audienceThe site-specific V(D)J recombination reaction necessary to assemble the genes coding for immunoglobulin (Ig) and T cell receptor (TCR) variable regions is initiated by a precise double strand cut at the border of the recombination signals flanking the genes. Extensive processing of the coding ends before their ligation accounts for most of the Ig and TCR repertoire diversity. This processing includes both base additions to and loss from the coding ends. On the other hand, it has generally been thought that signal ends are not modified before they are fused, and that signal joints consist of a perfect head-to-head ligation of the recombination signals. In this study, we analyzed signal joints created during the rearrangement of different TCR-beta and TCR-delta genes in thymocytes. We show that a significant fraction (up to 24%) of these signal joints exhibits junctional diversity. This diversity results from N nucleotide additions for TCR-beta signal joints, and from N additions and exonucleolytic digestion for TCR-delta joints. Altogether, our findings suggest that: (a) signal ends can undergo some of the same modifications as coding ends, (b) inversional rearrangement generates more diversity than deletional events, and (c) fine differences exist in the recombinase/DNA complexes formed at each rearranging locus
    corecore