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Abstract 

 

T cell receptor genes are assembled in developing T lymphocytes from discrete V, D and J 

genes by a site-specific somatic rearrangement mechanism. A flanking recombination signal, 

composed of a conserved heptamer and a semi-conserved nonamer separated by 12 or 23 

variable nucleotides, targets the activity of the rearrangement machinery to the adjoining V, D 

and J genes. Following rearrangement of V, D or J genes, their respective recombination 

signals are ligated together. Although these signal joints are allegedly invariant, created by the 

head-to-head abuttal of the heptamers, some do exhibit junctional diversity. Recombination 

signals were initially identified by comparison and alignment of germ-line sequences with the 

sequence of rearranged genes. However, their overall low level of sequence conservation 

makes their characterization solely from sequence data difficult. Recently, computational 

analysis unravelled correlations between nucleotides at several positions scattered within the 

spacer and recombination activity, so that it is now possible to identify putative recombination 

signals and determine and predict their recombination efficiency. In this paper, we analyzed 

the variability introduced in signal joints generated after rearrangement of the TRDD1 and 

TRDD2 genes in murine thymocytes. The recurrent presence of identical nucleotides inserted 

in these signal joints led us to reconsider the location and sequence of the TRDD1 

recombination signal. By combining molecular characterization and computational analysis, 

we show that the functional TRDD1 recombination signal is shifted inside the putative coding 

sequence of the TRDD1 gene, and consequently that this gene is shorter than indicated in the 

databases. 
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Introduction 

 

T cell receptor (TR) and immunoglobulin (Ig) V, D and J genes need to be rearranged by a 

site-specific recombinase before they are expressed in T and B lymphocytes, respectively. 

This recombinase complex is composed of two lymphoid specific proteins, the products of the 

recombination activating genes (RAG)-1 and -2, and ubiquitous DNA repair factors involved 

in DNA repair by non-homologous end joining (Jung and Alt 2004). The recombination 

activity is specifically targeted to TR and Ig V, D and J genes by the presence at their borders 

of a short DNA motif called recombination signal (RS) (Tonegawa 1983). After synapsis of 

the genes to be rearranged (Hiom and Gellert 1998), the introduction of a double strand break 

by the RAG proteins exactly at the border of the genes and their RS generates hairpin sealed 

coding ends and blunt, phosphorylated signal ends (McBlane et al. 1995). Processing of the 

coding ends requires opening of the hairpin structure, which can generate P nucleotides, and 

includes the eventual addition of non-templated N nucleotides by the terminal nucleotidyl 

transferase (TdT) and/or the removal of a few nucleotides from the coding ends before they 

are ligated together to create a novel exon (Jung and Alt 2004). The result is a highly diverse 

repertoire of coding joints. In sharp contrast, it is generally held that signal ends are ligated 

together without any processing, so that signal joints result from a perfect head to head 

juxtaposition of the RSs. 

RSs were first identified by sequence alignment of Ig genes (Tonegawa 1983), and later 

functionally characterized in recombination assays using artificial extrachromosomal 

substrates (Akira et al. 1987; Hesse et al. 1989). They consist of a conserved heptamer 

(CACAGTG) separated from a semi conserved nonamer (ACAAAAACC) by 12 or 23 bases. 

The first bases of the heptamer are conserved in almost all the human and murine functional 

RSs. The A/T rich nonamer on the other hand is less well conserved, although it acts as the 

docking site for RAG-1, which then recruits RAG-2 onto the RS (Difilippantonio et al. 1996). 
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Analysis of the spacer sequence was more complex because both 12 and 23 spacers are highly 

heterogeneous (Cowell et al. 2004; Glusman et al. 2001). However, the recent development of 

new computational tools unravelled correlations between nucleotides at several positions 

within the spacer, and correlations between the identity of nucleotides at key positions and the 

overall recombination efficiency of the RS (Cowell et al. 2002; Cowell et al. 2003). This 

mutual information model allows the calculation, for each RS, of a “RS information content” 

(RIC) score that accurately reflects and efficiently predicts the signal’s recombination activity 

(Cowell et al. 2004). 

In spite of the generally accepted models for V(D)J recombination, a large body of evidence 

indicates that signal ends can be processed and modified before they are ligated to form a 

signal joint (Candéias et al. 1996; Kanari et al. 1998; Touvrey et al. 2006). Recently, we 

undertook the analysis of the junctional diversity in signal joints created when the TRDD1 and 

TRDD2 genes are rearranged together in murine thymocytes. Three quarters of the signal 

joints were found to exhibit variability created by the insertion of N nucleotides in between 

the RSs’ heptamers. The recurrence of a di-nucleotide in these modified signal joints 

prompted us to re-consider the location of the break point at the 3’ end of the TRDD1 gene. 

Our results identified a new functional RS23 3’ of the murine TRDD1 gene. 
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Materials and methods 

 

Mice-Thymocyte DNA preparation 

CD3εΔ5/Δ5 mice onto a BALB/c background (Gallagher et al. 1998) were bred in the animal 

facility of the Commissariat à l’Energie Atomique-Grenoble, France. They were sacrificed by 

CO2 inhalation and their thymus removed at 6-8 wks of age. The thymi were crushed, and 

thymocyte DNA was prepared from single cell suspensions with the Nucleospin Tissue Kit 

(Macherey-Nagel, Hoerdt, France) according to the manufacturer’s instructions. 

 

Signal Joint amplification, analysis and cloning 

TR DD1/DD2 signal joints were amplified with the 3’DD1 and 5’DD2 oligonucleotide 

primers (Table 1) from total thymocyte DNA with the AmpliTaq Gold system (Applied 

Biosystems, Courtaboeuf, France) in 37 cycles consisting of 30 sec at 94°C, 30 sec at 58°C 

and 30 sec at 72°C followed by an incubation of 10 min at 72°C. Before the first cycle, the 

enzyme was activated at 94°C for 6 min. To analyze junctional diversity, one half of the 

product was incubated for 3 hrs with or without ApaL1 (10 U, New England Biolabs, St 

Quentin en Yvelines, France). Digests were then separated on an agarose gel, transferred onto 

a nylon membrane and hybridized with 3’DD1p (Table 1), a radiolabelled oligonucleotide 

specific for the signal end moiety of the amplicon. Analysis was performed on a Personnal 

Molecular Imager FX with the Quantity One software (Bio-Rad, Marnes la Coquette). For 

sequencing, after purification on an agarose gel, the PCR products were cloned into the 

PGEM-T Easy vector (Promega, Charbonnières, France) according to the manufacturer’s 

instructions and transformed into competent bacteria. Following plating, signal joint-

containing colonies were identified by hybridization with the 5’DD2p radio-labelled probe. 

Plasmid DNA was prepared from positive colonies, and digested with the restriction enzyme 

ApaL1 to discriminate between ApaL1-sensitive signal joints, resulting from the perfect 
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ligation of the TRDD1 and TRDD2 RSs (ApaL1-S) and those in which one or both of the RS 

ends have been processed/modified, resulting in ApaL1-resistant (ApaL1-R) signal joints, as 

described (Candéias et al. 1996; Touvrey et al. 2006). ApaL1-R signal joints were then 

sequenced with the 5’DD2p (Table 1) primer using BigDye Terminator reagent (Applied 

Biosystems, Courtaboeuf, France) to determine the molecular nature of the modifications.  

 

Identification of the 3'DD1 break point 

Ligation mediated-PCR (LM-PCR) was performed as described (Hempel et al. 1998) using 

CD3εΔ5/Δ5 total thymocyte DNA as template and the DR19/DR20 double stranded linker 

(Roth et al. 1993). Amplification was performed with the 3’DD1 and DR20 oligonucleotide 

primers. The resulting PCR products were digested to completion with ApaL1, separated on 

an agarose gel, transferred onto a nylon membrane and hybridized with 3’DD1p as described 

above. To determine the exact location of the double strand break, this amplicon was cloned 

and individual colonies sequenced. 

 

p53 amplification. 

DNA input in PCR reactions was verified by amplification of a fragment of the p53 gene with 

the oligonucleotides X6.5 and X7 (Table 1) for 35 cycles consisting of 30 sec at 94°C, 30 sec 

at 55°C and 1 min at 72°C followed by an incubation of 10 min at 72°C. Before the first 

cycle, DNA was denatured for 5 min at 94°C. PCR products were separated on an agarose gel 

in the presence of ethidium bromide and visualized on a Vistra Systems Fluorimager SI with 

the Image Quant 5.2 software (Molecular Dynamics, Bondoulfe, France). 
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Results 

 

We analyzed the structure of TR DD1/DD2 signal joints in thymocytes prepared from CD3ε-

deficient CD3εΔ5/Δ5 mice. CD3ε-deficiency prevents TR expression on developing thymocytes 

and arrests T cell development at an early stage, but does not impede V(D)J recombination 

activity. Consequently, TRD gene rearrangement is normal in these mice (Gallagher et al. 

1998; Malissen et al. 1995). Signal joints are believed to be created by the perfect 

juxtaposition of RS heptamers, thereby generating a restriction site for the enzyme ApaL1 if 

these heptamers conform to the consensus sequence and begin by a CAC or GTG triplet. 

However, following amplification and ApaL1 digestion, only a minor fraction of TR 

DD1/DD2 signal joints contain an ApaL1 restriction site and most of the PCR product is not 

digested (Fig 1). Thus, it appears that in the majority of the recombination events, TR 

DD1/DD2 signal joints do exhibit junctional diversity. After amplification, cloning and 

ApaL1 digestion, only about 26% (11 out of 42) of the individual signal joints were found to 

contain a site for this restriction enzyme. Therefore, in almost three quarters of TR DD1/DD2 

signal joints, the TRDD1 and/or the TRDD2 signal ends have been processed before ligation. 

To determine the exact nature of these modifications, ApaL1-R plasmids were sequenced (Fig 

2C). We referred to published sequences (Chien et al. 1987) to delineate the boundaries of 

both TRDD1 and TRDD2 genes and their RSs (Fig 2A). The sequence of ApaL1-R TR 

DD1/DD2 signal joints were aligned with the theoretical signal and coding ends generated by 

RAG cleavage (Fig 2B) in order to identify the nucleotides that have been lost and/or added 

prior to the ligation. None of these joints were found to exhibit nucleotide loss. All were 

found to contain non-templated N nucleotides, as described for TRB, TRA and other TRD 

signal joints (Candéias et al. 1996; Kanari et al. 1998; Touvrey et al. 2006). Interestingly, 

each of the ApaL1-R junctions contained at least 3 added nucleotides. This feature is unusual 

when compared to our previous results where additions of one or two nucleotides were 
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frequent (Candéias et al. 1996; Touvrey et al. 2006). In addition, all the stretches of added 

bases contain a “CA” dinucleotide immediately adjacent to the TRDD1 heptamer (Fig 2C). 

As the TRDD1 gene sequence ends with “CA”, this observation raises the possibility that the 

position of the double strand break introduced by the RAG-1/RAG-2 complex 3’ of the 

TRDD1 gene is 2 nucleotides (nt) inside the published gene sequence. 

To determine the exact location of this break point, we performed LM-PCR on DNA prepared 

from CD3ε-deficient thymocyte. This assay allows the amplification of blunt ended DNA 

molecules, such as V(D)J recombination-generated signal ends, following ligation of a ds 

linker (Fig 3A and 3B). The product detected in RAG-2-/- thymocyte DNA (Fig 3A) was 

considered to result from the presence of a non specific DNA break because it migrates 

slightly slower than the products amplified from CD3ε-deficient thymocytes, is totally 

resistant to ApaL1 digestion (fig 3A), and because no TR DD1/DD2 signal joints could be 

amplified from this sample (Fig1). As expected for signal ends, (Roth et al. 1993), the PCR 

products obtained from CD3ε-deficient DNA after linker ligation are almost fully digestible 

by ApaL1 (Figs 3A and 3B). The creation of a restriction site for this enzyme upon ligation 

with the double stranded linker indicates that most of the 3’TRDD1 signal ends end in a CAC 

triplet. However, this reconstitution does not allow any discrimination between the two 

possible cleavage sites. Therefore, the LM-PCR products were cloned and individual plasmids 

sequenced. All of the TRDD1 3’ signal ends identified in this experiment (20 clones from 2 

mice) were found to contain an additional CA dinucleotide (Fig 3C). Because the presence of 

these “extra” bases would not prevent the creation of an ApaL1 restriction site upon formation 

of a signal joint, we then sequenced two putatively un-modified ApaL1-S signal joints 

identified during our initial screening procedure. They were also found to contain this CA 

dinucleotide (Fig 2D). We concluded from these experiments that this CA dinucleotide results 

 9

H
al author m

anuscript    inserm
-00089245, version 1

H
al author m

anuscript    inserm
-00089245, version 1

H
al author m

anuscript    inserm
-00089245, version 1



from the introduction of a double strand break 2 bases upstream of the described 3’TRDD1 

RS, within the TRDD1 gene and is present in all the TR DD1/DD2 signal joints. 

Alignment with a consensus RS23 sequence shows (Fig 4A) that this shift results in an 

increase in the percentage of nucleotide identity from 36% (14 bases out of 39) to 56 % (22 

matches out of 39). The numbers of identical bases in the heptamer (5) and in the nonamer (6) 

motifs do not change, but they are distributed differently. The main difference resides in the 

spacer, where the number of positions in the RS matching with the consensus sequence raises 

from 3 to 11. However, simple sequence comparison and alignment do not provide any 

information regarding the RS functionality, except for a few essential positions such as the 

CAC triplet in the heptamer. (sentence deleted). When the spacer sequence containing the 

maximum mutual information (Cowell et al. 2004) was used in place of the consensus spacer 

sequence, the proposed 2nt shift again induces an increase in the percentage of identity (from 

41% to 53%) of the 3’TRDD1 RS with this model RS23 sequence (Fig 4B). As before, this 

increase results from a higher number of identical bases in the 23 nt spacer sequence. More 

importantly, this 2 nt shift raises the RIC score of the 3’TRDD1 RS from -70 to -52. This 

increased RIC score indicates that the shifted RS has the higher recombination efficiency 

when compared to the published sequence. This finding is in agreement with the fact that the 

only molecular species found during the LM-PCR analysis of the 3’TRDD1 signal ends 

identified a breakpoint 2 nt inside the TRDD1 gene. 
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Discussion 

 

TRD gene rearrangement is complex. This locus encompasses two D genes that can be used 

concurrently. The determination of TRDD1 and TRDD2 gene/RS limits were initially made 

solely by comparing their germ line sequences with the sequence of rearranged genes and 

attributing RS properties to the sequence most similar to published RS sequences (Chien et al. 

1987). The short length of the TRDD1 and TRDD2 genes, together with a high level of end 

processing (exonucleolytic nibbling, P and N nucleotides) makes the exact assignment of their 

boundaries in coding joints difficult and sometimes imprecise (Elliott et al. 1988; Lacy et al. 

1989; Takagaki et al. 1989). By analyzing the diversity of the reciprocal TR DD1/DD2 signal 

joints, we identified a pattern suggesting that bases from the TRDD1 gene were specifically 

retained in these signal joints. Imprecise cutting leading to the retention of coding flank has 

been reported only within the context of V(D)J recombination performed with mutated RAG-

1 and/or RAG-2 proteins (Lee and Desiderio 1999; Talukder et al. 2004). Thus, it seems 

highly unlikely that this phenomenon can account for the systematic inclusion of the CA 

dinucleotide in all the TR DD1/DD2 signal joints in mice possessing normal RAG proteins 

and V(D)J recombination activity, as was previously suggested by (Carroll et al. 1993). We 

therefore considered the possibility that the location of the double-strand break generating the 

inclusion of these two bases in the signal joints is not random but programmed, dictated by 

the position of the 3’TRDD1 RS. To verify this hypothesis, we cloned and sequenced the 

corresponding signal ends. The only molecular species found was terminated by this “extra” 

CA dinucleotide. Once loaded onto a RS, the RAG-1/RAG-2 complex creates a double strand 

break exactly at the gene/RS boundary (McBlane et al. 1995; Roth et al. 1993). This result 

therefore defines a new RS23 at the 3’ end of the TRDD1 gene, where the heptamer sequence 

reads CACACAG in place of CACAGGT (Fig 4C). This new RS23 presents more homology 

with a consensus RS23 sequence and with a model RS23 in which the spacer sequence 
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contains the highest mutual information possible. At the very least, our results indicate that 

there are two overlapping RSs downstream of the murine TRDD1 gene, which differ in their 

position by 2 nt. However, out of the 20 signal ends sequenced after LM-PCR, none was 

found to correspond to the published 3’TRDD1 RS. Thus, if it is at all functional, the 

published 3’TRDD1 RS sequence, ending with the CACAGGT heptamer, is not used in more 

than 5% of the recombination events. This experimental conclusion is strongly supported by 

the fact that the calculated RIC score for the new 3’ TRDD1 RS23, as defined in this study, is 

much higher than the score for the published TRDD1 RS23. This difference denotes a 

difference in recombination efficiency and correlates with our observations: out of two 

overlapping putative RS competing for the binding of the RAG proteins and the 

recombination machinery, only one is found in signal joints. Thus, our work defines a new 

sequence for the functional RS23 downstream of the TRDD1 gene (Fig 4C). Interestingly, in 

this revised version, the nucleotides in positions 5-8 of the nonamer (AAAC) now match the 

consensus sequence. These nucleotide positions are those that, of positions within the RS 

nonamer, show the lower position-wise entropy, i.e. the most conserved, in a collection of 155 

physiologic RS23 elements (Cowell et al. 2002). This conservation may reflect their 

involvement in base-specific DNA-protein contact, as shown by interference footprinting 

assays (Swanson 2002). Finally, it should be noted that this proposed revision of the murine 

3’TRDD1 RS strikingly increases its similarity to its human counterpart, downstream of the 

TRDD2 gene. The orthologous murine and human RSs now have an identical heptamer, and 

they differ at only 6 positions, 5 in the spacer and 1 in the nonamer. Without this revision, the 

sequences of these RSs differ at 24 of the 39 position (Fig 5). 

In conclusion, we show by a combination of molecular biology and computational analysis 

that the 3’TRDD1 gene/RS boundary is shifted 2 nt inside the TRDD1 gene when compared 

with the published sequence, and therefore that when used in a recombination event, the 

TRDD1 gene is shortened by 2 nt. This was probably not recognized earlier because of the 
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very high level of diversity in TR DD1/DD2 coding joints, in which only fragments of the 

TRDD1 sequence are retained and/or identifiable (Elliott et al. 1988; Lacy et al. 1989; 

Takagaki et al. 1989). In this context, it is formally possible that the phenomenon we are 

describing in this paper for the TRDD1 gene also applies to other TR or Ig genes but was 

never detected because it is masked by the exonucleolytic nibbling of coding ends that takes 

place during V(D)J recombination. Indeed, examination of 59 murine TRAJ genes from the 

IMGT database revealed for 17 of them the presence, adjacent to the heptamer, of a TG 

dinucleotide. These 17 genes could therefore have 2 overlapping heptamers. However, RIC 

score calculation predicted in each case that a 2 bp shift would result in a less efficient RS 

element (Table 2). Thus, it appears that the mere presence of a TG or CA dinucleotide at the 

border of a heptamer is not sufficient to modify the functional RS element, and that the 

revision that we are proposing for the 3’TRDD1 RS is specific for this gene. This study 

illustrates the contribution of computational modelling to the difficult task of RS 

identification and characterization, even in the case of already described functional genes. 
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Figure legends 
 

Fig 1: TR DD1/DD2 signal joints are diverse. 

Signal joints generated following rearrangement of TRDD1 and TRDD2 genes were amplified 

from thymocyte DNA prepared from two CD3ε-deficient and one RAG-2-deficient mice. 

They were then were migrated on an agarose gel without (-) or with (+) ApaL1 digestion and 

analyzed as described in Materials and Methods. The arrowhead indicates the position of the 

3’ TRDD1 signal end. The bottom panel shows amplification of the p53 gene as a DNA input 

control. 

 

Fig 2: Sequences of the ApaL1-R TR DD1/DD2 signal joints 

(A): Germline sequences of the murine TRDD1 and TRDD2 genes and their RS elements. 

TRDD1 and TRDD2 coding regions are in bold characters. RS heptamers and nonamers, 

separated by 12 or 23 bases, are underlined. The identification of the different elements is 

based on the published sequences (Chien et al. 1987). (B): Representation of the putative 

coding and signal ends. The boundaries of the putative coding and signal ends (CE and SE, 

respectively) are depicted for both TRDD1 and TRDD2. Coding regions are in bold 

characters. RS heptamers and nonamers, separated by 12 or 23 bases, are underlined. (C): 

Sequences of the modified signal joints. The amplified signal joints were sequenced with the 

5’DD2p oligonucleotide. Identification of TRDD1 and TRDD2 RS was based on the 

published sequences. The sequences of TRDD1 and TRDD2 RS heptamers are indicated on 

the first line in bold characters; the first flanking TRDD1 and TRDD2 bases are indicated in 

italic characters. The nucleotides listed under the “N” column represent putative non-

templated nucleotides. The recurrent CA dinucleotide flanking the TRDD1 RS is in bold, 

underlined characters. The number 2 in the last column indicates that these particular 

sequences were found twice in a sample from one mouse. Identical sequences found in 

 17

H
al author m

anuscript    inserm
-00089245, version 1

H
al author m

anuscript    inserm
-00089245, version 1

H
al author m

anuscript    inserm
-00089245, version 1



different samples were considered as distinct events. The last two sequences represent non-

standard rearrangement products generated through the recombination of the 5’TR DD1 and 

3’TR DD2 RS (Kanari et al. 2003). In these junctions, the sequence of the TRDD1 and 

TRDD2 genes are underlined. In (D), the sequence of two putatively un-modified ApaL1-S 

signal joints is shown. The additional “CA” dinucleotide adjacent to the TRDD1 RS was also 

found. 

 

Fig 3: LM-PCR analysis of the 3’TRDD1 RS end from murine thymocytes. 

(A) Total thymocyte DNA from two CD3ε-deficient and one RAG-2-deficient mice was 

amplified as described in Materials and Methods after ligation of a staggered double-stranded 

linker. The bottom panel shows the amplification of the p53 gene for the three DNA samples 

as a DNA input control. The product amplified from RAG-2-/- thymocyte DNA was 

considered to result from non-specific amplification (see text for details) and its nature was 

not explored further. (B) Total thymocyte DNA from a CD3ε-deficient animal reacted with 

the DR19/DR20 linker in the presence (T4 Lig +) or in the absence (T4 Lig -) of T4 DNA 

ligase was amplified with the 3’DD1 and DR20 oligonucleotide primers. DNA input control 

is shown on the bottom panel for the samples incubated with (1) and without (2) ligase. In (A) 

and (B), one half of the resulting PCR product was digested with ApaL1. After separation on 

an agarose gel and blotting, un-digested (-) and digested (+) PCR products were revealed by 

hybridization with the 3’DD1p radio-labelled probe. (C) Sequence of the 3’ RS23 TRDD1 

signal end. The germline sequence of the TRDD1 gene (in bold characters) and its 3’flanking 

region element is shown on the top “GL” line. The published sequence of the heptamer is 

underlined. The arrowhead indicates the position of the RAG-induced break. The “SE” line 

shows the sequence of the 3’TRDD1 signal end as determined following sequencing of the 

LM-PCR products. The extra “CA” dinucleotide is in bold characters.  
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Fig 4: Comparison of the 3’TRDD1 RS elements. 

The published (Chien et al. 1987) and new (this study) 3’TRDD1 RS23 sequences are aligned 

with a RS23 consensus sequence (A), a RS sequence assembled from a consensus heptamer, a 

consensus nonamer and the 23bp spacer with the most mutual information (B), and one 

another (C). Both sequences are from Cowell et al, 2004. The TRDD1 gene and the different 

elements composing the RS are separated by hyphens. DD1: TRDD1 gene; 7: heptamer; 23: 

23 bp spacer; 9: nonamer. In (A) and (B), identical bases are replaced by semi columns; in 

(C), identical bases are in bold capitals and differing bases in lowercase characters. 

 

Fig 5: Alignment of the human 3’TRDD2 and murine 3’TRDD1 RS elements 

The human 3’TRDD2 and murine 3’TRDD1 RSs are aligned using either the published (A) or 

revised (B) sequence for the murine element. Identical bases are in bold capitals and differing 

bases are in lowercase characters. The different elements composing the RSs are separated by 

hyphens. 7: heptamer; 23: 23 bp spacer; 9: nonamer. 
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Table 1: Oligonucleotides used in this study 

 

3’DD1  5’-GACAATACAGACCAAATATACAGC-3’ 

3’DD1p 5’-GCGCTGTAGGGAAATATGTAAGTTT-3’ 

5’DD2  5’-TGGCTTGACATGCAGAAAACACCTG-3’ 

5’DD2p  5’-GACACGTGATACAAAGCCCAGGGAA-3’ 

DR20 5’-GCCTATGTACTACCCGGGAATTCGTG-3’

DR19 5’-CACGAATTCCC-3’ 

X6.5 5’-ACAGCGTGGTGGTACCTTAT-3’ 

X7 5’-CACATGTACTTGTAGTGGATGG-3 
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Table 2: RS associated with TRAJ gene segments that have TG as the most 5’ nucleotides of 

the coding region as defined by IMGT.  The second RS in each row indicates the RS for 

which the heptamer includes the coding region TG as its first two nucleotides. 

 

TRAJ gene RS sequences RIC score 
IMGT RS 

RIC score 
shifted RS 

>M64239|TRAJ11*01 catttttgtggagaggtttgctgctgtg 
  tttttgtggagaggtttgctgctgtgtg 

-24.60 -36.34 

>M64239|TRAJ17*01 tgtttttgcttggcttcagatcactgtg 
  tttttgcttggcttcagatcactgtgtg 

-20.72 -53.66 

>M64239|TRAJ2*01 ggcttctgtaaaggtgtcacctgcagtg 
  cttctgtaaaggtgtcacctgcagtgtg 

-27.07 -59.52 

>M38103|TRAJ2*02 ggcttctgtaaaggtgtcacctgcagtg 
  cttctgtaaaggtgtcacctgcagtgtg 

-27.07 -59.52 

>M64239|TRAJ21*01 gctttctgtaatggtgctaaccattgtg 
  tttctgtaatggtgctaaccattgtgtg 

-23.60 -61.65 

>M64239|TRAJ23*01 tgtttttgacagggtatgtaacacagtg 
  tttttgacagggtatgtaacacagtgtg 

-21.74 -53.12 

>M64239|TRAJ24*01 ccattttgtagacgtgtttgtcacagtg 
  attttgtagacgtgtttgtcacagtgtg 

-28.30 -42.01 

>M64239|TRAJ30*01 cgttttgggtatggtcccaatcacagtg 
  ttttgggtatggtcccaatcacagtgtg 

-21.20 -61.81 

>X02858|TRAJ32*01 agttattgtaaggctctgcagggctgtg 
  ttattgtaaggctctgcagggctgtgtg 

-22.82 -49.57 

>M64239|TRAJ33*01 tgtttttgttaaggtttttgtgtctgtg 
  tttttgttaaggtttttgtgtctgtgtg 

-22.46 -45.63 

>M64239|TRAJ39*01 ggtttttgctgagctggagatcactgtg 
  tttttgctgagctggagatcactgtgtg 

-19.20 -42.07 

>M64239|TRAJ4*01 aattcttgtaaagcacctttctactgtg 
  ttcttgtaaagcacctttctactgtgtg 

-30.19 -53.24 

>X02859|TRAJ45*01  ggtttatgtcaaggcttgcctcagggtg 
  tttatgtcaaggcttgcctcagggtgtg 

-19.42 -60.55 

>M64239|TRAJ47*01 agttttgtcacaggagtttgaggctgtg 
  ttttgtcacaggagtttgaggctgtgtg 

-26.15 -40.71 

>M64239|TRAJ56*01 agtttttgtagagtcccgtgtcattgtg 
  tttttgtagagtcccgtgtcattgtgtg 

-23.89 -49.61 

>M64239|TRAJ57*01 agtatttgtaaggcagtgtgtgggtgtg 
  tatttgtaaggcagtgtgtgggtgtgtg 

-26.48 -47.20 

>M64239|TRAJ58*01 agtttttgcaaagcccttcagtgcagtg 
  tttttgcaaagcccttcagtgcagtgtg 

-24.44 -44.54 
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Fig2 : 
 
 
A : Germline sequences  
 DD1 7 23 9 
TRDD1 ..//GTGGCATATCACACAGGTTGAAGTATATTAAACCTCTGTTCAGAAACACT 
 
 DD2 9 12 7 
TRDD2 GGTTTTTGCAAAGCTCTGTAGCACCGTGATCGGAGGGATACGAG//.. 

 
 
B: Signal and coding ends following RAG-mediated cleavage 
 ----------CE SE------------------------------------ 
TRDD1 ..//GTGGCATATCA CACAGGTTGAAGTATATTAAACCTCTGTTCAGAAACAC 
 
 --------------------------SE CE-------------- 
TRDD2 GGTTTTTGCAAAGCTCTGTAGCACCGTG ATCGGAGGGATACGAG//.. 
 

 
 
C: Sequences of the ApaL1-R TR DD1/DD2 signal joints 
 
 DD2 N DD1  
 CACCGTG ATCGGA                   ATATCA CACAGGT  
 CACCGTG GTGGGCA CACAGGT  
 CACCGTG GGGCA CACAGGT 2 
 CACCGTG GGTCA CACAGGT  
 CACCGTG GAGCA CACAGGT  
 CACCGTG GAGCA CACAGGT  
 CACCGTG CCCCA CACAGGT 2 
 CACCGTG CACCA CACAGGT  
 CACCGTG TGTCA CACAGGT  
 CACCGTG TTCCA CACAGGT  
 CACCGTG GGCA CACAGGT 2 
 CACCGTG CCCA CACAGGT  
 CACCGTG ACCA CACAGGT  
 CACCGTG GCA CACAGGT 2 
 CACCGTG CCA CACAGGT  
 CACCGTG CCA CACAGGT  
 CACCGTG TCA CACAGGT  
 CACCGTG TCA CACAGGT  
 CACCGTG GGCA CACAGGT  
  
 CACCGTG ATCGGAGGGATACGAGGGGGGCA CACAGGT  
 CACCGTG ATCGGAGGGATACCTGTGGCATATCA CACAGGT  
 
D: Sequences of the ApaL1-S TR DD1/DD2 signal joints  
 
 DD2 N DD1  
 CACCGTG ATGCGA                   ATATCA CACAGGT  
 CACCGTG CA CACAGGT 2 
 

H
al author m

anuscript    inserm
-00089245, version 1

H
al author m

anuscript    inserm
-00089245, version 1

H
al author m

anuscript    inserm
-00089245, version 1



- + - + - +

CD3ε-1 CD3ε-2 RAG-2 -/-

ApaL1

1 2 3

- + - +
+ + - -

ApaL1

T4 Lig

1 2

Fig 3

A

C

B

GL …GTGGCATATCACACAGGTTGAAGTATATTAAA…
SE             CACACAGGTTGAAGTATATTAAA…

H
al author m

anuscript    inserm
-00089245, version 1

H
al author m

anuscript    inserm
-00089245, version 1

H
al author m

anuscript    inserm
-00089245, version 1



Fig 4
 
A 
 DD1 7 23 9 
RS23 Cons  GTGGCATATCA-CACAGTG-TTGGAACCACATCGGGAGCCTGT-ACAAAAACC 
3’DD1 (Chien)  GTGGCATATCA-:::::GT-:GAAGTAT:TTAAACCTCTG:TC-:G:::C::T 
3’DD1 (this study) GTGGCATAT  -::::CA:-G:T:::GT:T::TAAACCT::::-T::G::::A 
 

 
B:
 DD1 7 23 9 
RS23 MI  GTGGCATATCA-CACAGTG-TTGCAACCACATCCTGAGTGTGT-ACAAAAACC 
3’DD1 (Chien)  GTGGCATATCA-:::::GT-:GAAGTAT:TTAAACCTC:::TC-:G:::C::T 
3’DD1 (this study) GTGGCATAT  -::::CA:-G:TG::GT:T::TAAACC:C:::-T::G::::A 
 
 

C: 
 DD1  7 23 9
3’DD1 (Chien)  GTGGCATATCA-CACAggt-tgaagtaTATtaaAcctCTgTtc-agAaAcACt 
3’DD1 (this study) GTGGCATAT-  CACAcag-gttgaagTATattAaacCTcTgt-tcAgAaACa 
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Fig 5 
 
A: 
 7 23   9
h3’TRDD2 CACAcag-gttgGagTgcattAagcCTGTgt-gcAgAaACa 
m3’TRDD1 CACAggt-tgaaGtaTattaaAcctCTGTtc-agAaAcACt 
 
 
B: 
 7 23 9 
h3’TRDD2 CACACAG-GTTGgAGTgcATTAAgCCTtTGT-cCAGAAACA 
m3’TRDD1 CACACAG-GTTGaAGTatATTAAaCCTcTGT-tCAGAAACA 
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