22 research outputs found

    Minimizing maximum lateness in two-stage projects by tropical optimization

    Get PDF
    We are considering a two-stage optimal scheduling problem, which involves two similar projects with the same starting times for workers and the same deadlines for tasks. It is required that the starting times for workers and deadlines for tasks should be optimal for the first-stage project and, under this condition, also for the second-stage project. Optimality is measured with respect to the maximal lateness (or maximal delay) of tasks, which has to be minimized. We represent this problem as a problem of tropical pseudoquadratic optimization and show how the existing methods of tropical optimization and tropical linear algebra yield a full and explicit solution for this problem.Comment: 29 page

    Generalizations of Bounds on the Index of Convergence to Weighted Digraphs

    Get PDF
    We study sequences of optimal walks of a growing length, in weighted digraphs, or equivalently, sequences of entries of max-algebraic matrix powers with growing exponents. It is known that these sequences are eventually periodic when the digraphs are strongly connected. The transient of such periodicity depends, in general, both on the size of digraph and on the magnitude of the weights. In this paper, we show that some bounds on the indices of periodicity of (unweighted) digraphs, such as the bounds of Wielandt, Dulmage-Mendelsohn, Schwarz, Kim and Gregory-Kirkland-Pullman, apply to the weights of optimal walks when one of their ends is a critical node.Comment: 17 pages, 3 figure

    Characterization of tropical hemispaces by (P,R)-decompositions

    Get PDF
    We consider tropical hemispaces, defined as tropically convex sets whose complements are also tropically convex, and tropical semispaces, defined as maximal tropically convex sets not containing a given point. We introduce the concept of (P,R)(P,R)-decomposition. This yields (to our knowledge) a new kind of representation of tropically convex sets extending the classical idea of representing convex sets by means of extreme points and rays. We characterize tropical hemispaces as tropically convex sets that admit a (P,R)-decomposition of certain kind. In this characterization, with each tropical hemispace we associate a matrix with coefficients in the completed tropical semifield, satisfying an extended rank-one condition. Our proof techniques are based on homogenization (lifting a convex set to a cone), and the relation between tropical hemispaces and semispaces.Comment: 29 pages, 3 figure

    The level set method for the two-sided eigenproblem

    Full text link
    We consider the max-plus analogue of the eigenproblem for matrix pencils Ax=lambda Bx. We show that the spectrum of (A,B) (i.e., the set of possible values of lambda), which is a finite union of intervals, can be computed in pseudo-polynomial number of operations, by a (pseudo-polynomial) number of calls to an oracle that computes the value of a mean payoff game. The proof relies on the introduction of a spectral function, which we interpret in terms of the least Chebyshev distance between Ax and lambda Bx. The spectrum is obtained as the zero level set of this function.Comment: 34 pages, 4 figures. Changes with respect to the previous version: we explain relation to mean-payoff games and discrete event systems, and show that the reconstruction of spectrum is pseudopolynomia

    Characterizing matrices with X{\bf {X}}-simple image eigenspace in max-min semiring

    Get PDF
    summary:A matrix AA is said to have \mbox{\boldmathXX}-simple image eigenspace if any eigenvector xx belonging to the interval \mbox{\boldmathX}=\{x\colon \underline x\leq x\leq\overline x\} is the unique solution of the system Ay=xA\otimes y=x in \mbox{\boldmathX}. The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras

    Monotone interval eigenproblem in max–min algebra

    Get PDF
    summary:The interval eigenproblem in max-min algebra is studied. A classification of interval eigenvectors is introduced and six types of interval eigenvectors are described. Characterization of all six types is given for the case of strictly increasing eigenvectors and Hasse diagram of relations between the types is presented
    corecore