19 research outputs found

    Label-free toxicology screening of primary human mesenchymal cells and iPS-derived neurons

    Get PDF
    The high-throughput, label-free Corning Epic assay has applications in drug discovery, pharmacogenomics, cell receptor signaling, cell migration, and viral titration. The utility of Epic technology for biocompatibility testing has not been well established. In manufacturing of medical devices, in vitro and in vivo biocompatibility assessments are mandatory, according to ISO 10993. The new medical device regulation MDR 745/2017 specifies that ex vivo assays that can closely recapitulate in vivo scenarios are needed to better evaluate biomedical devices. We propose herein that Epic technology\u2014which enables detection of variations in cell mass distribution\u2014is suitable for biocompatibility screening of compounds. In this study, we challenged primary human osteoblasts, endothelial cells, and neurons derived from induced pluripotent stem cells with specific concentrations of methyl methacrylate (MMA). Polymeric MMA has long been applied in cranioplasty, where it makes contact with multiple cell types. Application of Epic technology yielded real-time cytotoxicity profiles for all considered cell types. The results were compared with those from microscopic observation of the same culture plate used in the Epic analyses. The Epic assay should be further examined for its utility for cell biology, genomics, and proteomics companion assays. Our results suggest that Epic technology can be applied to biocompatibility evaluation of human cells in medical device development

    Adipose stromal/stem cells assist fat transplantation reducing necrosis and increasing graft performance.

    Get PDF
    Autologous fat transfer (AFT) is a procedure for adipose tissue (AT) repair after trauma, burns, post-tumor resections and lipodystrophies still negatively impacted by the lack of graft persistence. The reasons behind this poor outcome are unclear and seem to involve damages in either harvested/transplanted mature adipocytes or on their mesenchymal progenitors, namely adipose stromal/stem cells (ASC), and due to post-transplant AT apoptosis and involution. A rabbit subcutaneous AT regeneration model was here developed to first evaluate graft quality at different times after implant focusing on related parameters, such as necrosis and vasculogenesis. Standard AFT was compared with a strategy where purified autologous ASC, combined with hyaluronic acid (HA), assisted AFT. Five million of autologous ex vivo isolated CD29+, CD90+, CD49e+ ASC, loaded into HA, enriched 1 ml of AT generating an early significant protective effect in reducing AFT necrosis and increasing vasculogenesis with a preservation of transplanted AT architecture. This beneficial impact of ASC assisted AFT was then confirmed at three months with a robust lipopreservation and no signs of cellular transformation. By a novel ASC assisted AFT approach we ensure a reduction in early cell death favoring an enduring graft performance possibly for a more stable benefit in patients

    Understanding Tumor-Stroma Interplays for Targeted Therapies by Armed Mesenchymal Stromal Progenitors: The Mesenkillers.

    Get PDF
    Tumor represents a complex structure containing malignant cells strictly coupled with a large variety of surroundingcells constituting the tumor stroma (TS). In recent years, the importance of TS for cancer initiation, development,local invasion and metastases became increasingly clear allowing the identification of TS as one of the possibleways to indirectly target tumors. Inside the heterogeneous stromal cell population, tumor associated fibroblasts(TAF) play a crucial role providing both functional and supportive environments. During both tumor and stroma development,several findings suggest that TAF could be recruited from different sources such as locally derived host fibroblasts,via epithelial/endothelial mesenchymal transitions or from circulating pools of fibroblasts deriving form mesenchymalprogenitors, namely mesenchymal stem/stromal cells (MSC). These insights prompted scientists to identifymultimodal approaches to target TS by biomolecules, monoclonal antibodies and, more recently, via cell basedstrategies. These latter appear extremely promising, although associated with still debated and unclear findings. Thisreview discusses on crosstalk between cancers and their stroma, dissecting specific tumor types, such as sarcoma,pancreatic and breast carcinoma where stroma plays distinct paradigmatic roles. The recognition of these distinctstromal functions may help in planning effective and safer approaches aimed either to eradicate or to substitute TSby novel compounds and/or MSC having specific killing activitie

    Human Adipose Mesenchymal Stromal/Stem Cells Improve Fat Transplantation Performance

    Get PDF
    The resorption rate of autologous fat transfer (AFT) is 40-60% of the implanted tissue, requiring new surgical strategies for tissue reconstruction. We previously demonstrated in a rabbit model that AFT may be empowered by adipose-derived mesenchymal stromal/stem cells (AD-MSCs), which improve graft persistence by exerting proangiogenic/anti-inflammatory effects. However, their fate after implantation requires more investigation. We report a xenograft model of adipose tissue engineering in which NOD/SCID mice underwent AFT with/without human autologous AD-MSCs and were monitored for 180 days (d). The effect of AD-MSCs on AFT grafting was also monitored by evaluating the expression of CD31 and F4/80 markers. Green fluorescent protein-positive AD-MSCs (AD-MSC-GFP) were detected in fibroblastoid cells 7 days after transplantation and in mature adipocytes at 60 days, indicating both persistence and differentiation of the implanted cells. This evidence also correlated with the persistence of a higher graft weight in AFT-AD-MSC compared to AFT alone treated mice. An observation up to 180 d revealed a lower resorption rate and reduced lipidic cyst formation in the AFT-AD-MSC group, suggesting a long-term action of AD-MSCs in support of AFT performance and an anti-inflammatory/proangiogenic activity. Together, these data indicate the protective role of adipose progenitors in autologous AFT tissue resorption

    Vaccination against SARS-CoV-2 in pregnancy during the Omicron wave: the prospective cohort study of the Italian obstetric surveillance system

    Get PDF
    Objectives: Evidence on the effects of the SARS-CoV-2 Omicron variant on vaccinated and unvaccinated pregnant women is sparse. This study aimed to compare maternal and perinatal outcomes of women infected with SARS-CoV-2 during the Omicron wave in Italy, according to their vaccine protection.Methods: This national prospective cohort study enrolled pregnant women with a positive SARS-CoV-2 nasopharyngeal swab within 7 days of hospital admission between 1 January and 31 May, 2022. Women who received at least one dose of vaccine during pregnancy and those who completed the vaccine cycle with the first booster were considered protected against moderate or severe COVID-19 (MSCD). A multivariable logistic regression model evaluated the association between vaccine protection and disease severity. Maternal age, educational level, citizenship, area of birth, previous comorbidities, and obesity were analysed as potential risk factors. Results: MSCD was rare (41/2147, 1.9%; 95% CI, 1.4-2.6), and the odds of developing it were significantly higher among unprotected women (OR, 2.78; 95% CI, 1.39-5.57). Compared with protected women (n = 1069), the unprotected (n = 1078) were more often younger, with lower educational degrees, and foreigners. A higher probability of MSCD was found among women with previous comorbidities (OR, 2.86; 95% CI, 1.34-6.12) and those born in Asian countries (OR, 3.05; 95% CI, 1.23-7.56). The percentage of preterm birth was higher among women with MSCD compared with milder cases (32.0% [8/25] versus 8.4% [161/1917], p < 0.001) as well as the percentage of caesarean section (52.0% [13/25] versus 31.6% [606/1919], p 0.029). Discussion: Although severe maternal and perinatal outcomes were rare, their prevalence was significantly higher among women without vaccine protection. Vaccination during pregnancy has the potential to protect both the mother and the baby, and it is therefore strongly recommended. Edoardo Corsi Decenti, Clin Microbiol Infect 2023;29:772 (c) 2023 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved

    Characteristics and Potentiality of Human Adipose-Derived Stem Cells (hASCs) Obtained from Enzymatic Digestion of Fat Graft

    Get PDF
    Human adipose-derived stem cells localize in the stromal-vascular portion, and can be ex vivo isolated using a combination of washing steps and enzymatic digestion. For this study, we undertook a histological evaluation of traditional fat graft compared with fat graft enriched with stromal vascular fraction cells isolated by the Celution&#8482; system to assess the interactions between cells and adipose tissue before the breast injection. In addition, we reported on histological analyses of biopsies derived from fat grafted (traditional or enriched with SVFs) in the breast in order to assess the quality of the adipose tissue, fibrosis and vessels. The hASCs derived from enzymatic digestion were systematically characterized for growth features, phenotype and multi-potent differentiation potential. They fulfill the definition of mesenchymal stem cells, albeit with a higher neural phenotype profile. These cells also express genes that constitute the core circuitry of self-renewal such as OCT4, SOX2, NANOG and neurogenic lineage genes such as NEUROD1, PAX6 and SOX3. Such findings support the hypothesis that hASCs may have a potential usefulness in neurodegenerative conditions. These data can be helpful for the development of new therapeutic approaches in personalized medicine to assess safety and efficacy of the breast reconstruction

    Optimisation by Design of Experiment of Benzimidazol-2-One Synthesis under Flow Conditions

    No full text
    A novel flow-based approach for the preparation of benzimidazol-2-one (1) scaffold by the 1,1 `-carbonyldiimidazole (CDI)-promoted cyclocarbonylation of o-phenylenediamine (2) is reported. Starting from a preliminary batch screening, the model reaction was successfully translated under flow conditions and optimised by means of design of experiment (DoE). The method allowed the efficient preparation of this privileged scaffold and to set up a general protocol for the multigram-scale preparation in high yield, purity, and productivity, and was successfully applied for the multigram flow synthesis of N-(2-chlorobenzyl)-5-cyano-benzimidazol-2-one, which is a key synthon for hit-to-lead explorations in our anti-inflammatory drug discovery program

    An Alternative Approach to Investigate Biofilm in Medical Devices: A Feasibility Study

    Get PDF
    Biofilms are assemblages of bacterial cells irreversibly associated with a surface where moisture is present. In particular, they retain a relevant impact on public health since through biofilms bacteria are able to survive and populate biomedical devices causing severe nosocomial infections that are generally resistant to antimicrobial agents. Therefore, controlling biofilm formation is a mandatory feature during medical device manufacturing and during their use. In this study, combining a crystal violet staining together with advanced stereomicroscopy, we report an alternative rapid protocol for both qualitative and semi-quantitative biofilm determination having high specificity, high repeatability, and low variability. The suggested approach represents a reliable and versatile method to detect, monitor, and measure biofilm colonization by an easy, more affordable, and reproducible method

    MSC and Tumors: Homing, Differentiation and Secretion Influence The Therapeutic Potentials

    No full text
    Mesenchymal stromal/stem cells (MSC) are adult multipotent progenitors with fibroblast-like morphology able to differentiate into adipocytic, osteogenic, chondrogenic, and myogenic lineages. Due to these properties, MSC have been studied and introduced as therapeutics in regenerative medicine. Preliminary studies have also shown a possible involvement of MSC as precursors of cellular elements within tumor microenvironments, in particular tumor-associated fibroblasts (TAF). Among a number of different possible origins, TAF may originate from a pool of circulating progenitors from bone marrow or adipose tissue-derived MSC. There is growing evidence to corroborate that cells immunophenotypically defined as MSC are able to reside as TAF influencing the tumor microenvironment in a potentially bi-phasic and obscure manner: either promoting or inhibiting growth depending on tumor context and MSC sources. Here we focus on relationships between the tumor microenvironment, cancer cells, and MSC, analyzing their diverse ability to influence neoplastic development. Associated activities include MSC homing driven by the secretion of various mediators, differentiation towards TAF phenotypes, and reciprocal interactions with the tumor cells. These are reviewed here with the aim of understanding the biological functions of MSC that can be exploited for innovative cancer therapy
    corecore