649 research outputs found
Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy
Lithium-stuffed garnets attract huge attention due to their outstanding potential as solid-state electrolytes for lithium batteries. However, there exists a persistent challenge in the reliable synthesis of these complex functional oxides together with a lack of complete understanding of the lithium-ion diffusion mechanisms in these important materials. Addressing these issues is critical to realizing the application of garnet materials as electrolytes in all solid-state lithium-ion batteries. In this work, a cubic phase garnet of nominal composition Li6.5Al0.25La2.92Zr2O12 is synthesized through a microwave-assisted solid-state route for the first time, reducing considerably the reaction times and heating temperatures. Lithium-ion diffusion behavior is investigated by electrochemical impedance spectroscopy (EIS) and state-of-art muon spin relaxation (ÎŒSR) spectroscopy, displaying activation energies of 0.55 ± 0.03 eV and 0.19 ± 0.01 eV respectively. This difference arises from the high inter-grain resistance, which contributes to the total resistance in EIS measurements. In contrast, ÎŒSR acts as a local probe providing insights on the order of the lattice, giving an estimated value of 4.62 Ă 10â11 cm2 sâ1 for the lithium diffusion coefficient. These results demonstrate the potential of this lithium-stuffed garnet as a solid-state electrolyte for all-solid state lithium-ion batteries, an area of growing interest in the energy storage community
Microwave-assisted synthesis and electrochemical evaluation of VO2 (B) nanostructures
Understanding how intercalation materials change during electrochemical operation is paramount to optimizing their behaviour and function and in situ characterization methods allow us to observe these changes without sample destruction. Here we first report the improved intercalation properties of bronze phase vanadium dioxide VO2 (B) prepared by a microwave-assisted route which exhibits a larger electrochemical capacity (232 mAh g-1) compared with VO2 (B) prepared by a solvothermal route (197 mAh g-1). These electrochemical differences have also been followed using in situ X-ray absorption spectroscopy allowing us to follow oxidation state changes as they occur during battery operation
Using individual tracking data to validate the predictions of species distribution models
The authors would like to thank the College of Life Sciences of Aberdeen University and Marine Scotland Science which funded CP's PhD project. Skate tagging experiments were undertaken as part of Scottish Government project SP004. We thank Ian Burrett for help in catching the fish and the other fishermen and anglers who returned tags. We thank José Manuel Gonzalez-Irusta for extracting and making available the environmental layers used as environmental covariates in the environmental suitability modelling procedure. We also thank Jason Matthiopoulos for insightful suggestions on habitat utilization metrics as well as Stephen C.F. Palmer, and three anonymous reviewers for useful suggestions to improve the clarity and quality of the manuscript.Peer reviewedPostprintPostprintPostprintPostprintPostprin
X-PSI Parameter Recovery for Temperature Map Configurations Inspired by PSR J0030+0451
In the last few years, the NICER collaboration has provided mass and radius
inferences, via pulse profile modeling, for two pulsars: PSR J0030+0451 and PSR
J0740+6620. Given the importance of these results for constraining the equation
of state of dense nuclear matter, it is crucial to validate them and test their
robustness. We therefore explore the reliability of these results and their
sensitivity to analysis settings and random processes, including noise,
focusing on the specific case of PSR J0030+0451. We use X-PSI, one of the two
main analysis pipelines currently employed by the NICER collaboration for mass
and radius inferences. With synthetic data that mimic the PSR J0030+0451 NICER
data set, we evaluate the recovery performances of X-PSI under conditions never
tested before, including complex modeling of the thermally emitting neutron
star surface. For the test cases explored, our results suggest that X-PSI is
capable of recovering the true mass and radius within reasonable credible
intervals. This work also reveals the main vulnerabilities of the analysis: a
significant dependence on noise and the presence of multi-modal structure in
the posterior surface. Noise particularly impacts our sensitivity to the
analysis settings and widths of the posterior distributions. The multi-modal
structure in the posterior suggests that biases could be present if the
analysis is unable to exhaustively explore the parameter space. Convergence
testing, to ensure an adequate coverage of the parameter space and a suitable
representation of the posterior distribution, is one possible solution to these
challenges.Comment: 27 pages, 13 figure
Chemical telemetry of OH observed to measure interstellar magnetic fields
We present models for the chemistry in gas moving towards the ionization
front of an HII region. When it is far from the ionization front, the gas is
highly depleted of elements more massive than helium. However, as it approaches
the ionization front, ices are destroyed and species formed on the grain
surfaces are injected into the gas phase. Photodissociation removes gas phase
molecular species as the gas flows towards the ionization front. We identify
models for which the OH column densities are comparable to those measured in
observations undertaken to study the magnetic fields in star forming regions
and give results for the column densities of other species that should be
abundant if the observed OH arises through a combination of the liberation of
H2O from surfaces and photodissociation. They include CH3OH, H2CO, and H2S.
Observations of these other species may help establish the nature of the OH
spatial distribution in the clouds, which is important for the interpretation
of the magnetic field results.Comment: 11 pages, 2 figures, accepted by Astrophysics and Space Scienc
Formation and Evolution of Planetary Systems: Cold Outer Disks Associated with Sun-like stars
We present the discovery of debris systems around three solar mass stars
based upon observations performed with the Spitzer Space Telescope as part of a
Legacy Science Program, ``the Formation and Evolution of Planetary Systems''
(FEPS). We also confirm the presence of debris around two other stars. All the
stars exhibit infrared emission in excess of the expected photospheres in the
70 micron band, but are consistent with photospheric emission at <= 33 micron.
This restricts the maximum temperature of debris in equilibrium with the
stellar radiation to T < 70 K. We find that these sources are relatively old in
the FEPS sample, in the age range 0.7 - 3 Gyr. Based on models of the spectral
energy distributions, we suggest that these debris systems represent materials
generated by collisions of planetesimal belts. We speculate on the nature of
these systems through comparisons to our own Kuiper Belt, and on the likely
planet(s) responsible for stirring the system and ultimately releasing dust
through collisions. We further report observations of a nearby star HD 13974 (d
=11 pc) that is indistinguishable from a bare photosphere at both 24 micron and
70 micron. The observations place strong upper limits on the presence of any
cold dust in this nearby system (L_IR/L_* < 10^{-5.2}).Comment: 31 pages, 9 figures, accepted for publication in Ap
Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution.
Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD
The moth : an unusual circumstellar structure associated with HD 61005
We present the discovery of an unusual spatially resolved circumstellar structure associated with the â90 Myr, nearby, G dwarf star HD 61005. Observations from the FEPS Spitzer Legacy Science survey reveal thermal emission in excess of expected stellar photospheric levels. Follow-up 0.1" resolution HST NICMOS coronagraphic images reveal scattered starlight â€7" (~240 AU) from the occulted star (1.1 ÎŒm flux density =18 ± 3.3 mJy; and 0.77% ± 0.16% of the starlight). The extremely high near-IR scattering fraction and IR excess luminosity f = L_(IR)/L_* â2 Ă 10^(â3) suggests scattering particle sizes of order a ~<1.1 ÎŒm/2Ï ~ 0.2 ÎŒm , comparable to the blowout size (a â 0.3 ÎŒm) due to radiation pressure from the star. Dust-scattered starlight is traced inward to an instrumental limit of ~10 AU. The structure exhibits a strong asymmetry about its morphological major axis but is mirror-symmetric about its minor axis
Feedback from the heart: emotional learning and memory is controlled by cardiac cycle, interoceptive accuracy and personality
Feedback processing is critical to trial-and-error learning. Here, we examined whether interoceptive signals concerning the state of cardiovascular arousal influence the processing of reinforcing feedback during the learning of âemotionalâ face-name pairs, with subsequent effects on retrieval. Participants (N = 29) engaged in a learning task of face-name pairs (fearful, neutral, happy faces). Correct and incorrect learning decisions were reinforced by auditory feedback, which was delivered either at cardiac systole (on the heartbeat, when baroreceptors signal the contraction of the heart to the brain), or at diastole (between heartbeats during baroreceptor quiescence). We discovered a cardiac influence on feedback processing that enhanced the learning of fearful faces in people with heightened interoceptive ability. Individuals with enhanced accuracy on a heartbeat counting task learned fearful face-name pairs better when feedback was given at systole than at diastole. This effect was not present for neutral and happy faces. At retrieval, we also observed related effects of personality: First, individuals scoring higher for extraversion showed poorer retrieval accuracy. These individuals additionally manifested lower resting heart rate and lower state anxiety, suggesting that attenuated levels of cardiovascular arousal in extraverts underlies poorer performance. Second, higher extraversion scores predicted higher emotional intensity ratings of fearful faces reinforced at systole. Third, individuals scoring higher for neuroticism showed higher retrieval confidence for fearful faces reinforced at diastole. Our results show that cardiac signals shape feedback processing to influence learning of fearful faces, an effect underpinned by personality differences linked to psychophysiological arousal
- âŠ