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Abstract

In the last few years, the NICER collaboration has provided mass and radius inferences, via pulse profile modeling,
for two pulsars: PSR J0030+0451 and PSR J0740+6620. Given the importance of these results for constraining
the equation of state of dense nuclear matter, it is crucial to validate them and test their robustness. We therefore
explore the reliability of these results and their sensitivity to analysis settings and random processes, including
noise, focusing on the specific case of PSR J0030+0451. We use X-ray Pulse Simulation and Inference (X-PSI),
one of the two main analysis pipelines currently employed by the NICER collaboration for mass and radius
inferences. With synthetic data that mimic the PSR J0030+0451 NICER data set, we evaluate the recovery
performances of X-PSI under conditions not previously tested, including complex modeling of the thermally
emitting neutron star surface. For the test cases explored, our results suggest that X-PSI is capable of recovering the
true mass and radius within reasonable credible intervals. This work also reveals the main vulnerabilities of the
analysis: a significant dependence on noise and the presence of multimodal structure in the posterior surface. Noise
particularly impacts our sensitivity to the analysis settings and widths of the posterior distributions. The
multimodal structure in the posterior suggests that biases could be present if the analysis is unable to exhaustively
explore the parameter space. Convergence testing, to ensure an adequate coverage of the parameter space and a
suitable representation of the posterior distribution, is one possible solution to these challenges.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Nuclear astrophysics (1129); Astronomical
simulations (1857); Astronomy data analysis (1858); High energy astrophysics (739); X-ray astronomy (1810)

1. Introduction

Millisecond pulsars (MSPs) are incredibly valuable
resources for understanding the behavior of matter at extreme
densities. With densities that can reach several times the
saturation density in their cores, neutron stars (NSs) are indeed
among the densest objects in our Universe (Lattimer 2012;
Oertel et al. 2017; Baym et al. 2018; Tolos & Fabbietti 2020;
Yang & Piekarewicz 2020; Hebeler 2021). The main scientific
goal of the payload Neutron Star Interior Composition Explorer
(NICER; Gendreau et al. 2016), installed on the International
Space Station, is to probe matter at these otherwise inaccessible
conditions to constrain the equation of state (EoS). It targets
MSPs showing X-ray emission with pulsations. This pulsating
X-ray emission is thought to originate from the heat deposited
at the magnetic poles by return currents (see, e.g., Ruderman &
Sutherland 1975; Arons 1981; Harding & Muslimov 2001).
The thermal X-rays1 thus generated carry information about the
spacetime in which the NS is embedded. Meanwhile the
relativistic speed of the NS's surface and the atmospheric
beaming breaks the degeneracy between the effects of the NS's
mass and radius, which can then be inferred through pulse
profile modeling (PPM) techniques (see Watts et al. 2016;
Bogdanov et al. 2019b, 2021; Watts 2019, and references
therein).

We use the X-ray Pulse Simulation and Inference (X-PSI)2

(Riley et al. 2023) software package, which is designed to
simulate the thermal X-ray emission of MSPs and estimate the
model parameter values that allow for a good representation of
a specific data set. By adopting sampling software like
MULTINEST (Feroz & Hobson 2008; Feroz et al. 2009,2019),
and more specifically PYMULTINEST (Buchner et al. 2014),
X-PSI provides a Bayesian inference framework that allows us
to explore the parameter space describing the emission model.
Model parameters include those that describe the temperature
patterns on the NS's surface, observer inclination, distance,
interstellar medium, the instrument response, and the NS's mass
and radius.
To establish the reliability of inferences with PPM, it is

necessary to carry out parameter recovery simulations,3 where
the analysis pipeline is deployed on synthetic data with known
input parameters, to see how well those are recovered. While
some parameter recovery simulations using X-PSI have already
been reported (Riley 2019; Bogdanov et al. 2019b, 2021), there
are other crucial aspects of the analysis process that still need to
be explored to establish the robustness of previous and current
findings: this is the aim of the current paper. In particular, we
investigate the impact of the Poisson noise present in the data,
the analysis settings, and the randomness of the sampling, and
we explore the important role of multimodal structures in the
posterior surface. We also perform parameter recovery
simulations for the more complex surface temperature patterns
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1 In this work, thermal emission and X-rays refer to the radiation originated
by the finite temperature of elements describing the NS’s surface.

2 https://github.com/xpsi-group/xpsi
3 I.e., simulations aimed at verifying whether our inference processes identify
posterior distributions that are statistically consistent with the parameter values
injected to build the analyzed synthetic data.
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that were identified as the preferred geometry in Riley et al.
(2019, hereafter R19).

Parameter estimation in the context of PPM is a high-
dimensional problem, requiring a large amount of computa-
tional resources. For this reason, in this paper we only focus on
simulated data representing models and parameter vectors that
can reproduce PSR J0030+0451 X-ray data (R19, Vinciguerra
et al. 2023a). PSR J0030+0451 is the first MSP whose
emission was analyzed and for which results were published
by the NICER collaboration (Miller et al. 2019, R19). These
publications also present the first mass inferences for an
isolated NS. Using X-PSI, R19 found that the NICER data of
PSR J0030+0451 could be well represented by an NS with a
radius of -

+12.74 km1.19
1.14 , a mass of -

+ M1.34 0.16
0.15 , and two hot

spots on the southern hemisphere (R19).4 The peculiarity of
this latter detail, together with the elongated, arc shape
(according to the X-PSI analysis) of one of these hot spots
drew a lot of attention among theorists studying magnetic fields
on NSs in general and MSPs in particular. These temperature
patterns indeed imply the presence of a complex magnetic field
with multipolar structure, in contrast to the classical picture of a
centered dipolar magnetic field (see, e.g., Bilous et al. 2019;
Chen et al. 2020; Kalapotharakos et al. 2021). These first
NICER results were also recently confirmed by an external
group, which also used the openly available X-PSI software to
reproduce those initial PSR J0030+0451 analyses (Afle et al.
2023).

The derived mass of PSR J0030+0451 also valorizes the
role of this pulsar for EoS studies. Its relatively standard mass
complements the high mass of PSR J0740+6620 (Cromartie
et al. 2020; Fonseca et al. 2021), the second NICER target
whose data and results have been published (Miller et al. 2021;
Riley et al. 2021; Salmi et al. 2022).

In Section 2, we summarize our inference analysis. We lay
out our main questions and how we address them in Section 3.
In Section 4 we show our findings, and we discuss them in
Section 5. We conclude with final remarks in Section 6.

2. Methodology: X-PSI Upgrades

In this work we adopt the same X-PSI framework currently
used for NICER analyses. We build on the findings of R19, by
applying an improved X-PSI pipeline to simulated data that
mimics a slightly revised PSR J0030+0451 NICER data set.
Detailed analysis of this revised data set, which is derived from
that presented in Bogdanov et al. (2019a), and uses the latest
NICER response matrix, is the main subject of Vinciguerra
et al. (2023a).

The aim of these two papers is to set a baseline for the
analysis of new, larger PSR J0030+0451 NICER data set that
will soon be available. In particular, here we reflect on the
current analysis protocol, adopted within the NICER collabora-
tion, and provide a benchmark to consistently interpret future
results concerning PSR J0030+0451.

2.1. Brief Outline of X-PSI Inference Analysis

In the following, we briefly outline the main steps of this
analysis and the most relevant features following recent X-PSI
developments.

NICER registers events (which include photons as well as
instrumental noise artifacts) characterized by a well-measured
time stamp and a specific pulse-invariant (PI) channel. Each
NICER PI channel has a nominal energy band that is related to
the real energy of incoming photons through the instrument
response. The events registered by NICER are then folded over
the spin period of the pulsar of interest (4.87 ms in the case of
PSR J0030+0451) and binned in phases (32 phase bins in past
and current NICER analyses). The NICER data analyzed with
X-PSI thus take the form of event counts per PI channel and
phase bin. This data is then compared to simulated data of the
same form, through our likelihood function (see Section 2.4.3
of R19).
Simulated data are generated by X-PSI, according to the

selected model (see Section 2.3) and parameter vector. The
models that we employ use relativistic ray tracing techniques
and describe: (i) the emission patterns on the NS's surface, how
the emitted thermal X-rays interact with (ii) the NS's
atmosphere (using NSX, Ho & Lai 2001) and (iii) the
surrounding spacetime (assuming the Oblate Schwarzschild
plus Doppler approximation; Morsink et al. 2007), (iv) how
they travel through the interstellar medium to the telescope, and
(v) how they are registered by the telescope. Every model
adopted in our analyses has multiple free variables; they
include the mass and radius of the pulsar of interest, which
impact the observed data through special and general
relativistic effects such as lensing, Doppler shifts, and
aberration (see Bogdanov et al. 2019b, for more details).
Within X-PSI, parameter estimation is then performed in a
Bayesian inference framework, where the parameter space is
explored by the sampling algorithm MULTINEST (Feroz &
Hobson 2008; Feroz et al. 2009, 2019), specifically PYMUL-
TINEST (Buchner et al. 2014).

2.2. Updates Since R19

Since the early publication of the analysis of PSR J0030
+0451 NICER data set (R19), X-PSI underwent several
changes; most of them have already been outlined in Riley
et al. (2021). Below we briefly list the most relevant differences
compared to the analyses presented in R19 (for more details,
see Riley et al. 2021).
X-PSI version: in this work for simulations and inference

analyses, we use X-PSI v0.7.9 (v2.0.0 to produce the
reported corner plots), an updated version of the package used
in R19 (X-PSI v0.1). From version v0.6.0, X-PSI allows
multiple rays to come to the telescope from the same point on
the NS's surface, an effect that operates to create multiple
images for a small part of the prior compactness space.
Modeling of the instrument response: as in Riley et al.

(2021) and Salmi et al. (2022), we no longer include the Crab
as part of our modeling of the instrument response, i.e., in
Equation (3) of R19, βR19= 0 (here R19 indicates parameter
definition according to R19). We instead use a single parameter
β [kpc−2]= αD−2, where D is the distance in kiloparsecs, and
α is the energy-independent scaling factor that multiplies the
reference response matrix. In our analysis, α is the only
parameter shaping the effective instrument response
( a=ij ij, where  and  are, respectively, the effective
and nominal instrument response for the ith channel and the jth
energy interval). Our analysis only depends on α and D
through their combination β; hence, the choice of sampling the
single parameter β. The prior on β has been constructed using

4 Uncertainties are approximations of the 16% and 84% quantiles in marginal
posterior mass (note that posterior mass does not mean posterior of the mass
parameter).
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two Gaussian distributions truncated at ±5σ for α and D,
respectively, centered at 1 and 0.325 kpc with scale parameters
σ set to 0.1 and 0.009 kpc.

Priors: as in Riley et al. (2021) and Salmi et al. (2022), we
adopt isotropic priors (i.e., flat in the cosine) for inclination and
colatitudes of the hot spot centers (see Section 2.3 for details
concerning the model parameters).

Settings: the range of the NICER PI channels has been
limited to [30, 300), corresponding to nominal energies of
[0.3–3] keV, compared to the [25, 300) range adopted in the
analyses of R19. The energy range included in the applied
response matrix is also slightly altered, following the changes
in the instrument response (the upper limit on the energy
considered is now 3.715 keV, compared to 3.6 keV in R19).
Further differences concern settings and definitions of variables
specific to the X-PSI pipeline, which are explicitly listed in the
X-PSI version of R19,5 such as the resolution setting for light
bending num_rays (now, as in Riley et al. 2021 and Salmi et al.
2022, set to 512, in R19 to 200).6

2.3. X-PSI Models

In X-PSI, the shape of a hot spot can be modeled by either
one or two overlapping spherical caps. In the latter case, one of
the caps entirely dominates the emission of the overlap region,
completely masking the other component. Each of these caps
emits at a uniform temperature. If the temperature of the
prioritized one is set to match the rest of the star (in this work,
always assumed to be zero), it will mask part of the emission
from the other without contributing to hot spot radiation (for
simplicity, hereafter we refer to such a cap as the omitting
component and to the correspondent ceding cap as the emitting
component). In this way we can allow for emitting regions with
circular, annular and crescent shapes, as well as dual
temperatures.

Each hot spot component is modeled with a number of cells
constituting a grid in azimuth and colatitude. Despite the
discretization, the emitting area is correctly accounted for by
appropriately weighting the edge cells. The radiation emerging
from the NS's surface is then modeled with rays generated from
these cells. Using relativistic ray tracing (we adopt the Oblate
Schwarzschild plus Doppler approximation of Morsink et al.
2007), we infer for each of these cells the emission angle
required for the ray to reach the observer, given the phase of
rotation (leaf) and the specific location of the cell on the NS's
surface. This in turn determines the intensity received by the
observer, estimated at different energies, while also accounting
for the temperature and surface gravity of the emitting cell, and
the interstellar medium. Through the instrument response, we
then estimate the events registered by NICER, to which a
background component is also added.

We model the NICER data set of PSR J0030+0451 with the
thermal emission generated by two nonoverlapping hot spots
on the NS's surface, as assumed in R19. This is motivated by
the two distinct pulses characterizing the data set of interest
(see Figure 1 of R19).

2.3.1. X-PSI Settings

X-PSI requires us to set specific run parameters; in the
analyses presented in this paper, we follow Riley et al. (2021)
and Salmi et al. (2022) and (unless otherwise stated) fix: the
square root of the approximate number of cells per hot spot
sqrt_num_cells to 32; the square root of the maximum
number of cells in the grid describing the hot spot component
max_sqrt_num_cells to 64; the phase resolution in the star
frame num_leaves to 64; and number of energies at which
the specific photon flux is calculated num_energies (defined
within the likelihood object) to 128.7 We refer to runs adopting
these settings as high-resolution runs. Due to limitation in
computational resources, in combination with the different
scope of our paper, for the most expensive models, we often
adopt a low-resolution setting, given by: sqrt_num_-
cells = 18, max_sqrt_num_cells = 32, num_-
leaves = 32 and num_energies = 64. Comparing
results with these two different resolution settings allows us
to assess their impact on our results and evaluate whether we
could reduce the required computational resources without
compromising the inference outcomes.

2.3.2. Atmosphere and Interstellar Medium Assumptions

In this work we assume the presence of a fully ionized NSX
hydrogen atmosphere (Ho & Lai 2001; Ho & Heinke 2009).
The effects of different assumptions on atmospheric composi-
tion have been studied in detailed for observed NICER data
sets in Salmi et al. (2023). To obtain the specific intensity of the
radiation field, we interpolate the values registered in a lookup
table, where this intensity is precomputed as a function of
effective temperature, surface gravity, photon energy, and the
cosine of emission angle calculated from the surface normal
(for more details, see Section 2.4.1 of R19). The methodology
is consistent with the setup of R19 and is mostly motivated by
limitation on computational resources (for comments over the
validity and limitation of this assumption, see Section 4.1.1
of R19). However, here, as in Riley et al. (2021) and Salmi
et al. (2022), we adopt an extended table, including higher
values for the surface gravity.
The effect of the interstellar medium is modeled and

parameterized with the hydrogen column density NH as in R19.

2.3.3. Model Naming Convention and Parameters

Within X-PSI it is possible to adopt models with various
levels of complexity to match the data. To assist the reader, in
Figure 1 we provide a schematic representation of our naming
convention for emission models (see R19, for more details).
Each hot spot can be characterized by a single temperature (ST)
or two temperatures (dual temperature, DT). For this paper, we
will be interested only in single-temperature hot spots. In the
simplest case, the hot spot is described by an emitting spherical
cap, simply labeled ST. More complicated shapes can be
obtained, for a single hot spot, by overlapping two different
spherical caps. If one of these components masks the other, the
hot spot can assume ring-like or crescent-like shapes. We refer
to a hot spot, whose masking spherical cap is not constrained in
location (except for the overlapping condition), as protruding
single temperature, PST. So far the applications of X-PSI have5 https://xpsi-group.github.io/xpsi

6 Previous settings and definitions can still be reproduced, and also
generalized, with derived classes that can be set to determine the parameter
values of a specific hot spot.

7 Visit the documentation page https://xpsi-group.github.io/xpsi/hotregion.
html for more details on the parameter definitions.
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been limited to modeling the emission of two nonoverlapping
hot spots, which we label as primary and secondary hot spots.
If the two hot spots describing the emitting surface pattern of
our model can assume the same range of shapes, we add: -S if
all of the parameters of the two hot spots are dependent on each
other; and -U if they are all independent of each other.
Otherwise, the two- or three-letter acronyms of each hot spot,
separated by a plus, are used to label the model.

All of the two-hot-spot models adopted so far for NICER
analyses include the parameters reported below (parentheses
clarify the components in cases for which two spherical caps
are used to describe a hot spot):

1. mass M [Me]: the mass;
2. radius Req [km]: the equatorial radius;8

3. distance D [kpc]: the distance between the Earth and
PSR J0030+0451;9

4. inclination i [rad]: the angle between the spin axis and
line of sight;

5. column density NH [cm−2]: the neutral hydrogen column
density. Following the TBabsmodel (Wilms et al. 2000,
updated in 2016), we derive the abundances of all other
attenuating gaseous elements, dust, and grains from the
value of NH;

6. temperature of the (emitting, superseding) primary
component Tp [K];

7. temperature of the (emitting, superseding) secondary
component Ts [K];

8. radius of the (emitting, superseding) primary component
ζp [rad]: the angular opening from the center of the NSs to

the center of the (emitting, superseding) primary spherical
cap and its circumference;

9. radius of the (emitting, superseding) secondary comp-
onent ζs [rad]: the angular opening from the center of the
NS to the center of the (emitting, superseding) secondary
spherical cap and its circumference;

10. colatitude of the (emitting, superseding) primary comp-
onent θp [rad]: the angle between the north pole, defined
by the spinning direction through the right-hand rule, of
the NS and the center of the (emitting, superseding)
primary spherical cap;

11. colatitude of the (emitting, superseding) primary comp-
onent θs [rad]: the angle between the north pole of the NS
and the center of the (emitting, superseding) secondary
spherical cap;

12. primary phase shift fp [cycles]: the phase shift of the
center of the primary prioritized component (omitting or
emitting) compared to the reference phase set by the data;

13. secondary phase shift fs [cycles]: the phase shift of the
center of the secondary prioritized component (omitting or
emitting) compared to the reference phase set by the data;

14. energy-independent scaling factor α: which multiplies the
reference instrument response (more on this in what
follows; see footnote 8).

In general, our models suffer from many degeneracies (see
Section 2.5 of R19, for more details).
Motivated by the findings in R19, in this work we apply two

different models: ST-U and ST+PST. In R19, ST-U was
disfavored compared to more complex models in view of their
correspondent evidences. However, this model was not flagged by
any anomaly in the residuals (see Section 3 of R19) and therefore
represents the simplest and least computationally demanding
model able to reproduce the PSR J0030+0451 NICER data. ST
+PST was preferred and one of the most complex models

Figure 1. Schematic representation of naming convention adopted within X-PSI. Note that the protruding P configurations include the eccentric E ones, which, in turn,
include the concentric ones C. In the case of antipodal symmetry (-S in the table), the lightest hot spot indicates that it is located on the hemisphere opposite to the
observer. The dots in the last row of the table suggest how additional models could be built, allowing for different geometries for the two hot spots.

8 As in R19, we adopt a flat prior in the joint mass and radius parameter space
(see Section 2..4.1of R19, for more details) to facilitate subsequent EoS
analyses (Riley et al. 2018).
9 Note that, as mentioned in Section 2, α and D are not always independently
parameterized.
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examined in R19. Below, we briefly outline changes in the
description of the ST+PST model.

2.3.4. Changes to ST+PST Model Parameterization

According to the naming convention explained above, in the
ST+PST model, the thermal emission from the NS's surface
originates from the radiation of a spherical cap with uniform
temperature and a second hot spot, whose shape depends on the
parameter values determining the relation between an emitting
and a masking spherical cap (see also Figure 2). We report
parameters as they are defined within the ST+PST model in the
X-PSI framework (R19 instead reported derived variables, an
alternative description). As in R19, we assume the most
complex (PST) hot spot to be the secondary. In this case, the
secondary parameters listed above refer to the emitting
component of the secondary hot spot, except for the phase,
which instead corresponds to the masking region. In addition to
the list previously presented, this model requires the definition
of the following parameters:

1. radius of the masking region of the secondary hot spot
ζo,s [rad]: the angular opening from the center of the NS
to the center of the masking spherical cap and its
circumference;

2. colatitude of the masking region of the secondary hot spot
θo,s [rad]: the angle between the north pole of the NS and
the center of the masking spherical cap;

3. azimuth offset of the secondary hot spot χs [rad]: the
offset in azimuth between the emitting and the masking
spherical caps of the secondary hot spot (the emitting
region is taken as a reference).

All of the parameters of interest are shown in Figure 2.
Note that despite the change in the reported variables, our

inference analyses are based on the same prior parameterization
described in R19, except for the following modified rejection rule.

In general in X-PSI, we require that the emitting spherical
caps of the two modeled hot spots do not overlap. In R19, the
implementation of this condition prevented the primary ST
from overlapping also with the omitted part of the emitting
spherical cap describing the PST hot spot. There is however no
physical reason to exclude such configurations from considera-
tion. Therefore in this work, the primary is allowed to overlap
with the secondary masking cap as long as it does not overlap

with the nonmasked mesh cells of the emitting component,
defining a comprehensive hot spot prior.10

2.4. MultiNest

In our inference runs, we use MULTINEST to explore the
parameter space. Parameter estimation is a byproduct of nested
sampling algorithms (Skilling 2004) as MULTINEST, which
target the computation of the evidence. Conceptually, to
perform such calculation, they start from a number of initial
samples (live points) that explore the whole prior space and
evolve them to define isolikelihood contours of higher and
higher values, enclosing increasingly smaller prior volumes.
The process continues until the change of evidence, due to the
contribution of the remaining, currently enclosed prior volume,
is estimated to be less than user-defined threshold, which sets
the termination condition. Samples are uniformly drawn by
MULTINEST from a unit hypercube prior volume and are
converted to physical parameter values by inverse sampling.
X-PSI interfaces with MULTINEST through PYMULTINEST
(Buchner et al. 2014) by defining priors and the likelihood
function. In our analysis, we employ the same background-
marginalized likelihood function for phase-folded and binned
events described in Equations (4) and (5) of R19 (see also
Miller & Lamb 2015). To probe our parameter space, we
inverse sample from our priors, as defined in R19 and at the
beginning of Section 2.2.
The use of MULTINEST requires the definition of a range of

settings. In particular in our standard inference runs, we specify
the following parameters, which can potentially affect the
results of our analyses.

1. Sampling efficiency (SE) e (or equivalently the expansion
factor 1/e): this parameter sets the enlargement factor
applied to the prior volume adopted during the sampling
procedure (Feroz et al. 2009). This parameter is
introduced in MULTINEST to widen the prior volume
defined by the clusters (ellipsoids), since they may not be
optimal in approximating the isolikelihood contour
(suggested values are 0.3 for evidence estimates and 0.8
for parameter estimations). In practice, the value we set in
X-PSI is later scaled by the fraction of the unit hypercube
sampling space effectively allowed by our prior condi-
tions and rejection rules (see Appendix B of Riley 2019
for details on its implementation in X-PSI);

2. Evidence tolerance (ET): this parameter sets our
termination criteria (the suggested value is 0.5) by
imposing an upper limit over the contribution of the
missing prior volume to the evidence at the current
iteration (see Appendix A of R19).

3. Number of live points (LP): this parameter sets how
many samples are initially drawn from the prior volume;
these are later replaced following the procedure described
in Feroz et al. (2009) and schematized in Algorithm 1 of
the same reference (in Feroz et al. 2009 an example is
given with 400 LP, and similar values are reported for
UltraNest as well; see Buchner 2021).

4. Multimodal or mode-separation method (MM): when this
modality is used, the samples associated with the
identified modes are evolved independently and locked
to the correspondent mode. The number of live points

Figure 2. Schematic representation of the ST+PST model and the parameters
describing it.

10 Due to the nature of the resulting spherical geometry calculations, the
project to change these priors became also known as the Circles of Hell.
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associated with each mode is determined by the prior
mass of each mode upon mode separation.

Accuracy and precision of evidence estimates and posterior
distributions increase with low sampling efficiency, low evidence
tolerance, and high number of live points. While making the
evidence calculation less efficient, enabling the mode-separation
allows us to recover parameters describing disjoint modes
identified by MULTINEST. The resulting broader understanding
of the posterior surface allows us to put the found solutions into a
wider context. We can compare them against expectations derived
from independent inferences and phenomena, e.g., other NICER
targets or gravitational wave estimates. Unfortunately, the
computational cost of the analysis also increases with number
of live points, low sampling efficiency, and low evidence
tolerance. Compromises are therefore required. Below we explore
the impact of differences in MULTINEST settings on the inferred
results, while limiting the computational cost. In particular, we
verify the robustness of our inference results employing variations
of our reference set up, defined by the same MULTINEST setting
configuration adopted in most of the analyses of R19: SE 0.3, ET
0.1, LP 1000, MM off.

3. Simulations and Tests: The Case of PSR J0030+0451

3.1. Our Main Lines of Inquiry

This work expands the previous studies reported in Riley
(2019) and Bogdanov et al. (2021). In particular we aim to
explore the robustness of X-PSI parameter recovery, i.e.,
checking whether the injected parameter values are recovered
within statistically expected credible intervals, for configura-
tions that resemble those emerging both from R19 and a
revised PSR J0030+0451 data set (Bogdanov et al. 2019a;
Vinciguerra et al. 2023a). For this reason, we test:

1. different Poisson noise realizations;
2. different MULTINEST and X-PSI settings;
3. different initial random conditions in the sampling

process;
4. different models describing the emission pattern, including

the never-before-tested and favored, according to R19, ST
+PST model (in particular, data sets are generated and
analyzed with ST-U and ST+PST models);

5. the effect of a mismatch between the model used to
generate and analyze the data sets.

Ideally to unveil possible biases, verify the statistical properties
of our results, and assess their reliability, we would set up
large-scale simulation studies, exhaustively exploring the
posterior distributions inferred from the analysis of the actual
data set (Vinciguerra et al. 2023a), similarly to what has been
done, e.g., in Berry et al. (2015). Through such studies, we
could also confirm the expected dependencies of the inference
performances on parameter values (Lo et al. 2013, and
references therein). However, there is a considerable mismatch
between the computational resources available to us and the
resources required to carry out such tests. We therefore restrict
our study to two simulated expected (i.e., in the absence of
noise) signals, corresponding to two specific parameter vectors
(one per model). With this limitation, we used about ∼106 core
hours on the Dutch national supercomputer Cartesius/
Snellius.11

3.2. Presentation of Injected Data

Here we describe the simulated signals that we adopt for the
inference analyses presented in this work. The simulated data
sets can be found in the Zenodo repository at doi:10.5281/
zenodo.7646352. Using the ST-U model, we produce seven
different data sets; all of them rely on the same expected signal
and parameter vector, but incorporate different noise realiza-
tions. These are obtained applying Poisson noise, with different
random seeds, over the expected counts per channel and phase
bin (grouped in 270× 32 bins), calculated from the applied
model, parameter vector, and correspondent background. The
exact procedure is explained in detail in the X-PSI tutorial.12

The expected signal is fixed by the maximum likelihood
sample found by a preliminary ST-U inference run (SE 0.3, ET
0.1, LP 10 000, MM on) on the revised NICER data set of
PSR J0030+0451 analyzed in Vinciguerra et al. 2023a). The
posterior sample sets the values of the 13 model parameters
outlined in Section 2.3, which in turn determine the simulated
thermal emission of PSR J0030+0451. These are consistent
with the parameter posteriors found by R19. The specific
parameter values adopted for simulation in this work are
reported in Table 1 and correspond to the geometric
configuration reported in the left panel of Figure 3.
Similarly, we generate three different data sets adopting the

more complex ST+PST model. We limit our tests to three
different Poisson noise realizations, built in the same way as for
the ST-U model, since analyzing data sets assuming ST+PST
is considerably (up to ∼90 times, for the same MULTINEST and
X-PSI settings) more expensive than when using the ST-U
model. These noise realizations are applied on the expected
counts obtained given the 16 values of the model parameters
reported in the last column of Table 1 and represented as hot
spot geometric configuration in the right panel of Figure 3.

Table 1
Injected Model Parameters

Parameter ST-U Value ST+PST Value

M [Me] 1.13 1.33
Req [km] 10.20 13.91

β [kpc−2] 7.19 9.25
( )icos 0.545 0.766

NH [cm−2] 1.40 0.98
( )Tlog Kp10 6.11 6.10

( )Tlog Ks10 6.10 6.10

ζp [rad] 0.15 0.08
ζs [rad] 0.32 0.89
θp [rad] 2.45 1.97
θs [rad] 2.75 2.98
fp [cycles] 0.46 0.46
fs [cycles] 0.50 0.24
ζo,s [rad] L 0.94
θo,s [rad] L 2.98
χs [rad] L −0.70

Notes. Parameters are given in the same format adopted to define our models;
in particular, we express the information concerning inclination and
temperature, respectively, in the form of cosine ( )icos and logarithms

( )Tlog10 . The reference phase of fs is half a cycle away from the reference
phase used to define fp; hence, the phase difference between primary and
secondary is fs + 0.5 − fp.

11 https://www.surf.nl/en/dutch-national-supercomputer-snellius 12 https://xpsi-group.github.io/xpsi/Modeling.html#Synthesis
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These values describe the maximum likelihood sample of a
preliminary low-resolution ST+PST run (SE 0.3, ET 0.1, LP
10 000, MM on) from the revised NICER data set of
PSR J0030+0451 (Vinciguerra et al. 2023a). This parameter
vector resembles the bulk of solutions found by R19 with the
same model.

For all data sets, we also fix the 270 parameters (one per PI
channel) that we use to model the phase-independent back-
ground (see Section 2.4.3 of Riley et al. 2021; Salmi et al.
2022, for more details on background modeling within X-PSI).
Since the signal is constructed by folding over the counts
collected over many rotational cycles, this background should
account for contributions from cosmic energetic particles,
X-ray contamination from the Sun, including optical loading,
as well as other X-ray point sources in NICER’s field of view
(as their time dependence should wash out over in the folding
procedure).13 The background is chosen to maximize the
likelihood of the NICER revised data set being produced by the
hot spot emission described by the 13 (for data sets constructed
using the ST-U model) or 16 (for data sets constructed using
the ST+PST model) parameter values of Table 1.

To produce synthetic data with X-PSI, we adopt the
synthesise_given_total_count_number X-PSI
function. This calculates a mock data set and its associated
exposure time from the values of the model parameters and the
number of total counts expected from the source and
background.

All of the data sets analyzed in this work have been
generated assuming high resolution in terms of number of cells,
leaves, and energies (see Section 2.3 for more details).

3.3. Performed Inference Runs

To investigate the robustness of X-PSI inference analyses,
we set up a number of inference runs on our simulated data
sets. Given our limited computational resources and the overall
adequacy of the ST-U model in explaining the PSR J0030
+0451 NICER data set (see Section 2.3.3), we investigate the
various performance dependencies listed in Section 3.1,
employing the cheapest ST-U model in the majority of our
cases.

3.3.1. Inferences with ST-U Models

All inference runs performed with the ST-U model are
carried out with the high-resolution X-PSI settings (the same
settings used for the data generation) and are reported in
Table 2. Below we briefly motivate our ST-U inference runs,
in view of the target tests described in Section 3.1.
Noise. To test the effect of different noise realizations in

parameter recovery and the width of credible intervals
(particularly for the case of mass and radius), we analyze all
seven data sets with the default MULTINEST settings.
SE, ET, and randomness in the sampling process. Of the

seven data sets built with the ST-U model, we use two to test
the effect of different values of SE, ET, and variability due to
the randomness in the sampling process. Motivated by the
settings suggested by the MULTINEST authors14 and what was
adopted in R19, we test the SE with additional values SE: 0.1,
0.8, while keeping ET, LP, and MM constant at their default
and the ET with additional value ET: 0.001, while keeping SE,
LP, and MM constant at their default. We then repeat all of
these runs, and the one with the default settings, a second time
to test variability due to the randomness in the sampling
process.
LP and MM. For the same two data sets selected for testing

SE and ET, we also perform an additional inference run, using
104 live points and adopting the mode-separation method (MM
on) to increase our prior exploration and learn more about our
posterior surfaces.

Figure 3. Schematic representation of the geometric configurations, as seen from Earth, of the NS hot spots adopted to create the data analyzed in this work. The
parameter values corresponding to the ST-U and ST+PST models, respectively, shown in the left and right panels, are reported in Table 1. The configurations show,
with solid lines, the hot spot section visible to us at phase f = fp = 0.0 cycle (the reference phase of the primary hot spot); in transparency we show the component
parts on the hemisphere, which, at this rotation phase, is opposite to the observer. With a second point on the equator, we also display how the NS rotates. The blue/
red line is used to mark the hottest/coldest component. We also remind the reader that for the ST-U configuration, the primary hot spot is defined as the component
with lower colatitude, while for the ST+PST it is set by the hot spot description as a single spherical cap with uniform temperature.

13 The phase-independent background, however, cannot capture other sources
of emission that couple to PSR J0030+0451’s rotational period, i.e., X-rays
radiated by PSR J0030+0451 via processes other than the thermal emission of
the hot spots. In the NICER X-ray bands so far considered for PPM, this
contribution is normally assumed to be negligible, with the only possible
exception being the thermal emission from the remaining part of the NS's
surface. This is in contrast to accreting and bursting pulsars, which constitute
possible targets for future missions such as STROBE-X and eXTP (Watts et al.
2016, 2019; Ray et al. 2019), where there may be a contribution from hot spot
emission reflected from the disk.

14 https://github.com/farhanferoz/MultiNest
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Performance when the data set is created with the more
complex ST+PST model. We would also like to understand the
impact of adopting a model in our inference analysis, which
does not include all of the complexity of the true (in this case
simulated) system. This indeed reflects the situation for our
normal NICER analysis, where the models adopted for
inference cannot incorporate every detail of the physics
describing the actual physical system. However we normally
assume that the collected data is not resolved enough for our
analyses to be sensitive to the missing physics. So to test how
sensitive we are to the hot spot shapes, we use one of the data
sets generated employing the ST+PST model, and test the
performance of our inference pipeline when assuming the ST-
U model. In this case, we know that the model adopted for our
inference lacks the complexity used to generate the data. In
particular, we would like to check: if mass and radius can be
recovered anyway; if the residuals hint at any inadequacy of the
model to reproduce the data; if the evidence helps in identifying

ST+PST as the best model (for which we also need an
inference run with ST+PST as the assumed model; see below);
the relation between the recovered and injected geometrical
parameters; and how the identified solutions compare to what
was found for ST-U in R19. This test can also highlight
degeneracies between models and, as a natural consequence,
the presence of multimodal structure in the posterior surface
(since we can consider the different hot spot models as nested).
As shown in Table 2, we perform five inference runs with
different MULTINEST settings to check the robustness of our
results.

3.3.2. Inferences with ST+PST Models

Because of the high computational costs of inference runs
employing the ST+PST model, we often use the low-resolution
X-PSI settings, reducing the number of leaves, cells, and
energies compared to what was used to produce the various
data sets. This change also allows us to explore the robustness
of our results when adopting more limited resolution.
The settings used for ST+PST inference runs and their

motivation resemble what is reported in Section 3.3.1 for ST-U
runs, and they are summarized in Table 3. In addition to the
cases presented for ST-U analyses, here we also check the
effect of external constraints on parameter recovery and the
width of credible intervals. In particular, we set up three
inference runs assuming that there are tight constraints on mass
and distance (for one run), and mass, distance, and inclination
for the other two. We choose uncertainties compatible with
those being used for other NICER sources, where these
constraints are available. For these runs, we modify the above-
described priors as follows.
Mass prior. We sample the NS's mass from a normal

distribution, centered on an injected value of M= 1.33Me,
characterized by standard deviation σ= 0.053Me and trun-
cated at ±5σ;
Distance prior. As mentioned at the beginning of

Section 2.2, we use information about the distance to define
the prior of the β parameter. Differently from the other analyses
(including what was assumed in R19), for these inference runs
we adopt σ= 0.0006 kpc (instead of σ= 0.009 kpc).
Inclination prior. Finally we tighten the prior on inclination,

using a truncated normal distribution, with center ( )arccos 0.766
and σ set to 0.0001, on the inclination and inverse sampling the

( )icos from the cosine of the cumulative distribution of this
function.

4. Results

In this section, we present the overall results of our inference
runs; the main findings are reported in Figures 4–13. The data
and routines (including some examples of modules adopted by
X-PSI for inference) necessary to reproduce the posterior
distributions presented in this Section are reported in our
Zenodo repository Vinciguerra et al. (2023b).
Since the main goal of the NICER mission is to measure the

masses and radii of NSs, we particularly focus on the recovery
of these parameters. In this list of fundamental variables, we
also include the compactness, the combination of mass and
radius to which our analysis is expected to be most sensitive. In
Figures 5, 6, 7, 9, 10, and 11 we therefore report the posterior
distributions of mass, radius, and compactness obtained by
X-PSI, when adopting MULTINEST to sample the parameter

Table 2
Summary of the Inference Runs Performed with the ST-U Model

Data Set SE ET LP MM N Core hr

Noise 1 0.3 0.1 103 off 2 ∼900
∼1500

0.1 0.1 103 off 2 ∼2900
∼1800

0.8 0.1 103 off 2 ∼500
∼1000

0.3 0.001 103 off 2 ∼1700
∼2000

0.3 0.1 104 on 1 ∼12800

Noise 2 0.3 0.1 103 off 2 ∼600
∼1300

0.1 0.1 103 off 2 ∼1200
∼3000

0.8 0.1 103 off 2 ∼700
∼800

0.3 0.001 103 off 2 ∼2000
∼900

0.3 0.1 104 on 1 ∼13200

Noise 3 0.3 0.1 103 off 1 ∼1200

Noise 4 0.3 0.1 103 off 1 ∼1400

Noise 5 0.3 0.1 103 off 1 ∼700

Noise 6 0.3 0.1 103 off 1 ∼800

Noise 7 0.3 0.1 103 off 1 ∼1000

ST+PST 0.3 0.1 103 off 1 ∼1400
(Noise 1) 0.8 0.1 103 off 1 ∼600

0.1, 0.1 103 off 1 ∼2900
0.3, 0.001 103 off 1 ∼1100
0.3, 0.1 104 on 1 ∼13700

Notes. High resolution is always used for number of cells, leaves, and energies.
The first column shows the synthetic data used for the inference run (horizontal
lines separate different data sets). The different noise numbers indicate different
noise realizations. SE: sampling efficiency; ET: evidence tolerance; LP: live
points and MM (multimode): mode-separation modality describe the MULTIN-

EST settings of the inference run (more details can be found in Section 2.4).
“N” represents the number of repetitions of a run. “Core hr” indicates the CPU
core hours used to perform the inference run; note that when two identical
inference analyses have been performed, the CPU core hours for each run are
reported in two separate and consecutive rows.
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space, and smoothed with kernel density estimations (KDEs)15

from GetDist.16 As in R19, Riley et al. (2021), and Salmi et al.
(2022), in the 1D posterior plots we highlight the area enclosed
within the ∼16% and ∼84% quantiles of the 1D marginalized
distribution, while in the 2D plots we show contours for the
∼68.3% credible regions; injected values are reported with thin
solid black lines. In most of our 2D posterior plots, showing
compactness versus radius, the KDE interpolation introduces

an artifact at the boundary of the compactness limit, applied
through rejection rules in our prior definition (similar rejection
rules and artifacts are also present in R19; Riley et al. 2021;
Salmi et al. 2022).17

4.1. Inferences with the ST-U Model

We first focus on our ST-U inference runs, whose settings
are summarized in Table 2. In particular here we consider
parameter estimations on data generated with the same ST-U
model (results obtained with mismatching models are reported
in Section 4.3).

4.1.1. Noise and Settings

Figures 5, 6, and 7 show that overall mass, radius, and
compactness are well recovered by our inference runs. This is
also demonstrated by the P–P plot reported in Figure 4. The
inferred geometry of the hot spots also resembles the correct
configuration shown in the left panel of Figure 3. In particular,
we find that, with our default MULTINEST settings, the
percentage of parameters recovered within the 1D 68% credible
interval lies within the expected, although indicative, range
∼54%–84%,18 for five out of the seven inference runs
characterized by different noise realizations. This range
expresses the uncertainty due to the finite and, for statistical
purposes, relatively low number of model parameters. The
∼54%–84% range is defined by the ∼16% and ∼84%
quantiles of the percent point function of a binomial

Table 3
Summary of the Inference Runs Performed with the ST+PST Model

Data Set SE ET LP MM X-PSI Settings Constraints Core hr

Noise 1 0.3 0.1 103 off LR NO ∼12100
0.8 0.1 103 off LR NO ∼4700
0.8 0.1 5 × 103 off LR NO ∼11600
0.3 0.1 104 on LR NO ∼55500
0.8 0.1 103 off HR NO ∼14600
0.8 0.1 6 × 103 off HR NO ∼103400
0.8 0.1 103 off LR MD ∼3200
0.8 0.1 103 off LR MDI ∼7000
0.3 0.1 104 off LR MDI ∼43700

Noise 2 0.3 0.1 6 × 103 off LR NO ∼23000

Noise 3 0.3 0.1 6 × 103 off LR NO ∼35500

ST-U 0.8 0.1 103 off LR NO ∼3300
(Noise 1) 0.3 0.1 104 on LR NO ∼79800

Notes. The first column shows the synthetic data used for the inference run (horizontal lines separate different data sets). The different noise numbers indicate different
noise realizations. SE: sampling efficiency; ET: evidence tolerance; LP: live points and MM: mode-separation (multimode) modality describe the MULTINEST settings
of the inference run (more details can be found in Section 2.4). LR and HR, respectively, correspond to low and high resolution. The seventh (second-to-last) column
describes the parameters on which we applied constrained priors: M stands for mass, D for distance, and I for inclination. The CPU hours needed for each run are
reported in the last column.

Figure 4. P–P plot for the seven noise realizations produced and analyzed with
the ST-U model. It represents (for mass, radius, and compactness) the
cumulative fraction recovered within a credible interval (i.e., the cumulative of
the left-side p-value at which the injection is found) as a function of the
credible intervals. The legend values in parentheses are the p-values from the
Kolmogorov–Smirnov test against the theoretical uniform expectations (the
injected value should appear p% of the times within the p% credible interval).
The gray areas represent the 1σ, 2σ, and 3σ confidence intervals on the
theoretical expectations, calculated according to Cameron (2011).

15 KDEs are applied to the 1D and 2D marginalized posterior distributions
found adopting MULTINEST. We observe that the total number of samples (in
the [root].txt, https://github.com/farhanferoz/MultiNest), over which
we apply the KDEs, is mostly dependent on the number of live points. In
particular the relation between live points and final samples is approximately
linear (nsamples ≈ 30 × nLP, where n generically symbolizes the number).
16 https://getdist.readthedocs.io

17 The presence of this hard boundary formed through rejection rules, and
therefore found in the posterior, cannot be easily passed to the KDE, which
consequently tries to smooth it (this is, e.g., visible in Figure 6, where this 2D
plot shows the three contours, defining different credible regions, approaching
each other at the bottom and almost delineating a diagonal, while they should
resemble the hard cutoff that we see, e.g., at the bottom of the mass and radius
2D posterior plot). Note that similar, nontrivial, hard boundaries are also
present in the other 2D plots; however, most of the time they do not
significantly affect our posterior distributions.
18 The reported range is indicative as it is calculated under the assumption of
independence between the model parameters, which are instead correlated in
nontrivial ways.
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distribution characterizing a sample of size n= 13 (number of
inferred parameters per run, for the ST-U model) and rate of
success p= 68% (considered credible interval). Since we
calculated this uncertainty also at the 68% level, our findings
(i.e., that five of seven runs exhibit parameter recovery within
the expected range) are consistent with expectations. The two
outliers, generated with noise realization 4 and 5, recover,
respectively, 12 and 2 of the parameters within the 1D 68%
credible interval. Comparing the two panels in Figure 5 and
looking at Figure 6, we notice that a major role is played by the
noise realization. In particular, noise seems to have a greater
effect than the MULTINEST settings on the precision and
accuracy of our results. Figure 5 shows, however, that the
impact of MULTINEST settings is also somewhat dependent on
the noise realization. Indeed, the right panel (where the
analyzed data was subjected to the noise realization 2) shows
a larger scatter in the results compared to the left one (where
the analyzed data was subjected to the noise realization 1).

In Figure 6, we notice that the injected values of mass and
radius intersect the posterior distributions of the data set labeled
with noise realization 5 only at their tails. Even in this case,
however, our analysis is able to identify the correct compact-
ness. All of our runs find the injected value of compactness
within the 68% credible interval of its 1D posterior distribution,
the only exceptions being the runs whose noise realization is
labeled with 2; in these cases, the true value lies just outside
this boundary.

As mentioned before, the P–P plot of Figure 4 summarizes
the findings outlined above, focusing on mass, radius, and
compactness, for the seven different noise realizations tested
with the ST-U model and whose marginalized posteriors are
shown in Figure 6. Both plots show that the mass is always
underestimated; however, it stays well within the 3σ
(Cameron 2011) level. Radius and compactness are well
recovered, lying most of the time within the 1σ level.
These findings corroborate the robustness and reliability of

our compactness inferences, at least in absence of unaccounted-
for physics.

4.1.2. Degeneracies and Posterior Multimodal Structure

As shown in Table 2, we also run our inference analyses
enabling the mode-separation modality. Thanks to these runs,
we have uncovered a multimodal structure in our likelihood
and posterior surfaces,19 which were not highlighted in the
earlier R19 study.20 We find two distinct modes. In terms of hot
spot geometries, these two modes are qualitatively similar to
the two leftmost plots in Figure 8. The posteriors of mass,
radius, and compactness of these two runs, plotted with the

Figure 5. Posterior distributions (smoothed by GetDist KDEs) from 18 runs, for radius, compactness, and mass. Results are obtained using data sets produced with
two different noise realizations, labeled as one (left panel) and two (right panel). The two data sets were generated and analyzed with the ST-U model. Each of the two
plots shows posteriors from nine inference runs, which use different MULTINEST settings, as reported in the legend (for definitions, see Section 2.4). On top of the 1D
posteriors, we report the 68% credible intervals (representing the area within the 16% and 84% quantiles in the 1D marginal posterior mass) starting from the median
of the distributions. These values, as well as the colored areas, refer to the two runs enabling the mode-separation modality (dashed black lines). The lines in the 2D
plots represent the 68% credible areas of the 2D marginalized posterior, while the shadow refers to the whole distribution of the inferences enabling the mode-
separation modality. The thin solid black lines represent the injected values. Overall, the various settings seem to recover consistent marginalized posteriors, while the
different noise realizations adopted to build the two analyzed data sets have a significant impact on the shapes of these distributions. The outlier within the runs in the
left panel has MULTINEST settings: SE 0.8, ET 0.1, LP 103, MM off (2). The outlier within the runs in the right panel has MULTINEST settings: SE 0.3, ET 0.1, LP 103,
MM off (2).

19 Given the relatively uninformative priors (for many parameters, uniform)
that we adopt in our analyses, we expect qualitative one-to-one correspondence
between modes in the likelihood and in the posterior surfaces.
20 There is one case that appears to capture an additional mode in the Zenodo
repository associated with R19 (ST-U model, inference run 3).

10

The Astrophysical Journal, 959:55 (22pp), 2023 December 10 Vinciguerra et al.



dashed black lines in Figure 5, correspond to the main mode. In
terms of likelihood, there is a clear preference for the main
mode; the difference in log-likelihood21 corresponding to the
maximum likelihood samples of these two modes is indeed
∼25. Although the secondary modes, found by the two mode-
separation runs (respectively, on data generated with noise
realizations 1 and 2), share the main characteristics (very low
inclination angle, two hot spots similar in size and temperature,
almost antipodal in phase, close to the equator, and always on
the southern hemisphere), they present slightly different
properties. In particular, the posterior distributions of the
NS's mass and radius have different averages and standard
deviations as reported in Table 4.

4.2. Inferences with the ST+PST Model

We present here the results obtained with inference runs
adopting the ST+PST model, as reported in Table 3,
particularly focusing on the analyses of data generated with
the same ST+PST model (results obtained with mismatching
models are reported in Section 4.3).

4.2.1. Noise and Settings

Figure 9 shows the impact of different noise realizations (left
corner plot) and different MULTINEST and X-PSI settings (right
corner plot) on the inferred posteriors of mass, radius, and
compactness. Note that for the data set described by the noise
realization 1, we report results from a run with different
MULTINEST settings (LP 104 and MM on) compared to the runs
on the other two data sets (LP 6× 103 and MM off). In all of
the reported runs, the injected values lie within the 2D ∼95.4%
credible regions. Looking at the 1D posterior distributions, we
find that, for similar analysis settings, the parameter recovery
performance of X-PSI is worse for the more complex model ST
+PST than for the simpler ST-U model. In particular, when
broadening our attention to all of the parameters describing the
ST+PST model, the three runs reported in the left panel of
Figure 9 recover within the 1D 68% credible interval: seven
(∼43%, for the case of noise realization 1), five (∼31%, for the
case of noise realization 2), and three (∼19%, for the case of
noise realization 3) parameters over the 16 describing the ST
+PST model. These recovery rates are all below the expected
range of ∼56%–81% (calculated as 16% and 84% quantiles of
a binomial distribution describing a sample of size n= 16 and
success rate p= 68%) and are mostly connected to geometrical
parameters.

Figure 6. Posterior distributions (smoothed by GetDist KDEs) of radius,
compactness, and mass. Results are obtained using data sets produced with
seven different noise realizations, labeled from 1 to 7 in the legend. The data
sets were generated and analyzed with the ST-U model. Credible intervals and
colored areas refer to the inference run labeled as noise realization 1 (also
represented with dashed black lines). See the caption of Figure 5 for further
details on the plot. These inference runs were performed with the X-PSI and
MULTINEST settings described in the Sections 3.3.1 and 2.4 and reported in
Table 2. As expected, the different noise realizations introduce some scatter in
the marginalized posteriors. The outlier (see, in particular, the mass plot) is the
run corresponding to noise realization 5, and the presence of this outlier may be
simply due to random fluctuations arising in the sampling process (see also the
presence of outliers in Figure 5). The purple line delineating broad radius and
compactness posteriors represents results from noise realization 2.

Figure 7. Posterior distributions (smoothed by GetDist KDEs) of radius,
compactness, and mass. The data set was generated adopting the ST+PST
model (noise realization label 1) and analyzed assuming the ST-U model.
Credible intervals and colored areas refer to the inference run enabling the
mode-separation modality (also represented with dashed black lines). See
caption of Figure 5, for further details on the plot. The inference runs shown in
this plot were performed with the MULTINEST settings reported in the legend
(see Section 2.4 for definitions) and in Table 2. For all inferences, the injected
parameter values are in the bulk of the marginalized posteriors even though the
model adopted for inferences does not allow for the complex configuration
used to generate the data set. The obtained distributions also well resemble
those obtained when the correct model is used (see Figure 9). The outlier
corresponds to the run with MULTINEST settings: SE 0.8, ET 0.1, LP 103, MM
off, and again it may simply be due to statistical fluctuations, possibly reflecting
the need of more stringent sampling parameters.

21 Log-likelihood and log-evidence values are always expressed in natural
logarithms.
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The variability due to noise looks comparable to the
variability generated by different MULTINEST settings. Among
them, the number of live points seems to make the biggest
difference, in terms of parameter recovery. If LP5× 103, the
posterior distributions become wider and slightly shifted
toward the correct mass and compactness values. Figure 9
also demonstrates that, while noticeably reducing the required
computational resources, using the X-PSI low resolution
described in Section 3 only slightly modifies our posterior
distributions compared to the X-PSI high-resolution runs.

4.2.2. External Constraints, Degeneracies, and Posterior Multimodal
Structure

Effects of external constraints. In Figure 11, we show the
impact on mass, radius, and compactness posteriors of different
external constraints. Comparing it with the results in Figure 9,
it is clear that adding constraints on mass and distance
significantly reduced the widths of the radius posterior;
however, including the constraints on the inclination, in our
test case, biases our findings (we discuss these results in detail
in Section 5.3).

Degeneracies. The complexity of the ST+PST model
introduces additional degeneracies between the parameters
(see also Section 2.5 of R19); in particular, in view of our low
sensitivity to the smaller details describing the hot spot shapes,
many different parameter vectors are able to reproduce quite
well the analyzed data (see, e.g., the small differences reported
in Figure 12 and discussed in Section 5). This can be
qualitatively understood, for example, looking at the top plots
of panels (A) and (C) in Figure 12. They represent the hot spot
configurations found in our inference runs on data generated
with the ST+PST model. In particular, the top plots of panels
(A) and (C) represent the maximum likelihood sample of the
runs analyzing data simulated with noise realizations 1 and 3
(the results for noise realization 2 mimic the configurations of
panel (A)). Although both of these represented configurations
can well replicate the simulated data, only the latter recovers a
hot spot configuration that resembles the correct one (right
panel of Figure 3). This is probably due to the weak sensitivity
of our analysis to, e.g., the direction of the thermally emitting
arc (which indeed faces the correct direction in panel (C) and
the wrong direction in panel (A)). The additional degeneracies
introduced by the complexity of the model therefore compro-
mise the recovery of the model parameters (as demonstrated by
the low rate of recovered parameters mentioned in
Section 4.2.1), which set the geometry of the emitting NS's
surface.
Posterior Multimodal Structure.When applied to the data set

generated using the ST+PST model, our inference runs
employing mode-separation modality find two different modes
with comparable maximum likelihood values. The configura-
tion corresponding to the maximum likelihood samples of these
two modes are shown in the top plots of panels (A) and (B),
Figure 12. While the main mode approximately recalls the
simulated configuration of the hot spots, the secondary mode
resembles the ST-U configuration in Figure 3. With the
averages and standard deviations reported in Table 5, the
recovered radius and mass corresponding to this secondary
mode are, however, quite close to the injected values.

Figure 8. Schematic representation of the hot spot configurations, as seen from Earth, for the three modes found by the X-PSI inference run when using the ST-U
model to analyze a data set generated with ST+PST. The specific configurations correspond to the maximum likelihood sample associated with each mode (for other
details, see the caption of Figure 3).

Table 4
Means ·á ñ and Standard Deviations σ of the Mass M and Equatorial Radius Req

Posterior Distributions

Mode 1 Mode 2 Mode 3

á ñReq [km] 9.7, 10.9 (13.1) 9.9, 13.4 (14.6) (15.3)

sReq [km] 0.7, 1.2 (1.5) 1.3, 1.7 (1.0) (0.5)

[ ]á ñM M 1.1, 1.1 (1.4) 1.1, 1.2 (1.5) (1.6)

σM [Me] 0.1, 0.1 (0.2) 0.1, 0.2 (0.2) (0.2)

Note. The different values correspond to the two (three) modes found by the
X-PSI inference run when using the ST-U model to analyze a data set
generated with the ST-U model-noise realization 1, 2 and, in brackets, with the
ST+PST model-noise realization 1.
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4.3. Model Mismatches

4.3.1. ST-U Inferences on Data Produced with the ST+PST Model

In Figure 7 we show 1D and 2D posterior distributions of
mass, radius, and compactness for ST-U runs on data produced
with the ST+PST model. This figure suggests that X-PSI
inference runs can recover these parameters even when the
model used for inference does not capture the full complexity
of the ground truth. However, in view of the previous findings

concerning our sensitivity to noise realizations, our results
cannot be easily generalized, i.e., this could be restricted to a
subset of parameter values and noise combinations. To
generalize our findings, we would need to consider a
statistically significant number of model parameter vectors
and noise realizations. For this data set, we also perform an
inference run enabling the mode-separation modality. We find
three modes from this analysis; the configurations corresp-
onding to their respective maximum likelihood samples are
reported in Figure 8. The corresponding means and standard
deviations for mass and radius are reported in brackets in
Table 4. In this case, the main mode is also clearly dominant in
terms of likelihood and evidence calculation, while the other
two modes show comparable maximum log-likelihood and
local evidences.
So far for X-PSI analyses, we have mostly relied on residuals

to verify how well our solution can represent the data. In the
context of X-PSI, residuals are defined, per bin in channel and
phase, as the difference between the data and the inferred
expected counts divided by the square root of the same
expected counts (see, e.g., bottom panel of R19). Interestingly,
although the ST-U model cannot represent a configuration as
complex as the one injected to simulate the data (shown in the
right panel of Figure 3), the residuals do not present any
anomalous features and therefore look compatible with Poisson
noise.

Figure 9. Posterior distributions (smoothed by GetDist KDEs) of radius, compactness, and mass. The data sets were generated and analyzed adopting the ST+PST
model. In the left panel, we present results obtained using data sets produced with three different noise realizations, labeled from 1 to 3 in the legend. For all of these
runs, we adopted the X-PSI low-resolution setting (LR), SE 0.3 and ET 0.1. For noise realization 2 and 3, we use LP 6 × 103 and MM off, for noise realization 1 LP
104 and MM on (the right panel demonstrates that these two settings lead to similar results). This plot shows that, given these settings, model, and observing
properties, our recovered posterior distribution is sensitive to the noise realization adopted to generate the analyzed data sets. In the right panel, we show the corner
plots corresponding to different runs analyzing the data set generated with noise realization 1 and different X-PSI and MULTINEST settings as shown in the legend. The
three curves with broader posteriors represent the runs with �5 × 103 LP (the first two and the last one in the legend). This corner plot demonstrates the need for a
large number of live points to sensibly estimate the width of the marginalized posteriors. All of these inference runs are described in Sections 3.3.2 and 2.4, and their
details are reported in Table 3. In both plots, credible intervals and colored areas refer to the inference run adopting SE 0.3, ET 0.1, LP 104, MM on and LR as
MULTINEST and X-PSI settings (represented with dashed black lines), and applied to the data set generated with noise realization 1. See caption of Figure 5, for further
details.

Table 5
Means ·á ñ and Standard Deviations σ of Mass M and Equatorial Radius Req

Posterior Distributions

Mode 1 Mode 2

á ñReq [km] 13.8 (9.7) 13.4 (9.7)

sReq [km] 1.3 (0.6) 1.2 (0.7)

[ ]á ñM M 1.4 (1.1) 1.4 (1.1)

σM [Me] 0.2 (0.1) 0.2 (0.1)

Note. The different values correspond to the two modes found by the X-PSI
inference run when using the ST+PST model to analyze a data set generated
with the ST+PST model: noise realization 1 and, in brackets, with the ST-U
model-noise realization 1.
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4.3.2. ST+PST Inferences on Data Produced with the ST-U Model

In Figure 10, we report posterior distributions for the mass,
radius, and compactness obtained when analyzing data
produced with the ST-U model, assuming the more complex
ST+PST model. The ST+PST model allows for configurations
that can well approximate the ST-U ones (ST-U is nested in
ST+PST).22 The model can therefore identify, as a main
solution, samples that well represent the correct and injected
parameter vector. Also in this case, mass, radius, and
compactness are well recovered by our analysis. In particular,
both inference runs on ST-U generated data return 1D/2D
posterior distributions whose 68% credible intervals/regions
include the injected values of these parameters. However, the
various dependencies of our findings and the restricted test
cases prevent us from generalizing this conclusion.

As for the runs in the right panel of Figure 5, the more
computationally expensive MULTINEST settings (LP 104,
MM on) lead to slightly wider and more accurate posteriors
compared to the other runs. However, now the complexity of
the model, and the degeneracies between its parameters, yield
two different modes in the posterior, with similar mass and
radius (both correctly recovered) and comparable in maximum

likelihood and local evidences. The corresponding hot spot
configurations of the two modes are, however, significantly
different from one another. To understand this difference, we
can compare the top plots of panels (B) and (D), Figure 12. The
configuration corresponding to the maximum likelihood sample
of the main mode is indeed represented in the top plot of panel
(D), Figure 12. The (exact) configuration corresponding to the
secondary mode is not reported here, but it is qualitatively
equivalent to the secondary mode found analyzing data
generated with the ST+PST model and shown in the top plot
of panel (B) of Figure 12.
Similarly to the previous case, the mismatch between the

model adopted to create the data set and that used to analyze it
never appears as a clear feature in the residuals. This is, in this
case, less surprising, since the model used for inference is the
most complex between the two.

5. Discussion

Here we discuss the results presented in Section 4. For the
(albeit limited) cases considered in this paper, our inference
runs on simulated data illustrate the adequacy of X-PSI analysis
in recovering mass, radius, and compactness given PSR J0030
+0451–like NICER data. This reinforces and expands the
findings reported in Riley (2019) and Bogdanov et al. (2021),
which also included ST-U recovery tests. In particular,
compactness, mass, and radius are recovered within the
95.4% 1D credible interval (when no additional constraints
are applied on the inclination)23 for all of the tested data sets,
except the one generated with the ST-U model and noise
realization 5. In the following, we reflect on the meaning of our
findings, particularly focusing on the role of different analysis
conditions, and discuss the few anomalous encountered cases
and the caveats of our analysis.
The ST+PST inference runs for which we adopted mock

constraints on mass, distance, and inclination are separated out
and discussed in Section 5.3.

5.1. The Effect of Noise, Analysis Settings, and Randomness in
the Sampling Process

This study shows a clear dependence of our results,
including our sensitivity to MULTINEST settings, on the noise
realization. This is shown for the ST-U model in Figures 5 and
6, and in Figure 9 for the more complex ST+PST model. This
implies that each data set will require its own study to assess
the robustness of the results. In Figure 5 we indeed see that the
posterior distributions for the data set created with ST-U and
noise realization 1 (left corner plot) are much more similar to
each other than those obtained analyzing the data set created
with noise realization 2 (right corner plot). Note that the
posterior distributions in the left corner plot are so insensitive
to the different tested MULTINEST settings, that even increasing
the number of live points by about an order of magnitude24

does not seem to make any significant difference (despite
expectations; see for example Ashton et al. 2019; Riley et al.
2021). However, for both of the ST-U data sets analyzed with
different MULTINEST settings (i.e., the data generated with

Figure 10. Posterior distributions (smoothed by GetDist KDEs) of radius,
compactness, and mass. We present results from two ST+PST inference runs
analyzing the data set generated with the ST-U model defined by noise
realization 1; MULTINEST settings are reported in the legend. “LR” stands for
the X-PSI low-resolution setting. Credible intervals and colored areas refer to
the mode-separation inference run (also represented with dashed black lines).
The injected parameter values are well within the bulk of the obtained
marginalized posteriors. These distributions are also similar to those found
when the ST-U model was used to analyze this data set. Increasing the number
of live points used in the sampling procedure to 104 slightly shifts the obtained
posterior distributions, highlighting that 103 live points are probably not
enough to adequately explore the parameter space. See the caption of Figure 5
for further details.

22 The ST-U model can be recovered, within the ST+PST model, setting the
angular radius of the PST masking component to zero. In terms of sampling,
this value constitutes the edge of the prior of the PST masking component
angular radius.

23 As a single pulsar, external constraints on inclination, as well as mass, are
not available for PSR J0030+0451. Hence this condition reflects the analysis
procedure also followed by the NICER collaboration.
24 Our only ST-U run on this data set with LP 104 also enables the mode-
separation modality; this effectively reduces the amount of free live points.
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noise realization 1 and 2), one of our nine inference runs shows
a different behavior. This is also the case for the ST-U
parameter estimation runs for the data set created with the ST
+PST model (yellow curve in Figure 7). Given our limited
tests, it is not possible to conclusively assess the main origin of
such fluctuations. They clearly have a stochastic component,
since, for noise realizations 1 and 2, they appear in only one of
two identical analyses; however, it is unclear whether they
could be exacerbated by poorer MULTINEST settings, e.g., by
fixing SE to 0.8 (two out of the three outliers have this setting).
The poor statistics also prevent a significant evaluation of the
role played by the noise realization on the rate of occurrence of
these anomalous results.

Despite the noise fluctuations, compactness is recovered
within the ∼68% credible interval for almost all cases.
Exceptions are: the inference run on a data set built with the
ST-U model and noise realization 2 (where the injection value
lies just outside it, see right panel of Figure 5) and the inference
run on the data set built with the ST+PST model and noise
realization 3 (which qualitatively recovers the injected hot spot
geometry). These results are consistent with expectations,
although quantitative expectations can only be formulated
assuming independence between the parameters. Mass and
radius are also well recovered by our analyses: we recover mass
within the ∼68% credible interval for seven of the 10, ST-U
and ST+PST, data sets and the radius for six of them. These
rates both fall within the approximate expected 5–8 range,
estimated as explained in Section 4.1.1. The main deviation
comes from data generated with ST-U model and noise
realization 5. This could either be due directly to the noise
realization, such that repeated inference runs (with the default
or better MULTINEST settings) would show the same behavior,
or it could just be due to a random fluctuation (as we see
happening for one of the nine ST-U inference runs on data
characterized by noise realization 1 and 2). We have indeed just
argued that the MULTINEST settings required to adequately
explore the parameter space may vary for different noise
realizations. An inspection of this simulated data set does not
reveal any particular anomalous feature; we can only identify a
slightly lower rate of high counts for channels ∼(30–60) and
phases ∼(0.2–0.6) compared to the other noise realization.
Given the computational resources available to us for this
study, we currently cannot fully determine the statistical
relevance of this deviation nor its origin. Its relatively low
rate, however, is in principle consistent with statistical
fluctuations and is therefore not particularly worrying.

As shown in Figure 6, different noise realizations can yield
very different sizes of the mass, radius, and compactness
credible regions. This finding seems also completely indepen-
dent from the model adopted to infer the parameter values (see
the similarities between the left plot of Figures 5 and 10). Our
results therefore highlight the crucial role played by stochastic
processes on the recovered mass and radius uncertainties and
reveal scatter that could complicate and affect their predictions.

5.2. Model Complexity

Both ST-U and ST+PST models are able to mimic the data
of PSR J0030+0451 collected by NICER (see, e.g., Figure 1
in R19). Without accounting for noise realizations, the data sets
produced, assuming these models and their correspondent
parameter vectors as reported in Table 1, are not only similar in
overall counts but also in the hot spot and background

contributions to the data. This can be seen in Figure 13,
comparing, e.g., the mostly overlapping dashed gray and solid
black lines, which represent the background counts used (and
found in preliminary analyses of the revised PSR J0030+0451
NICER data set)25 to simulate data with the ST-U and the ST
+PST model, respectively. These strong similarities show that,
even for the same background, there are significant degen-
eracies in the model and parameter space able to explain
PSR J0030+0451–like data. When we use the ST-U model on
data produced with the ST+PST model, we find a configuration
that very much resembles the one used for generating ST-U
data sets and reported in the left panel of Figure 3. In particular,
independently from the model used to create the analyzed data
set, the ST-U inference run enabling the mode-separation
modality finds similar hot spot configurations for the primary
and secondary modes. When analyzing the data set created with
the ST+PST model, however, a tertiary mode is also revealed
(the geometries of all modes are shown in Figure 8).
The ST+PST inference runs show slightly different

behavior: the primary mode found when analyzing the data
generated with the ST-U model shows a configuration in
between the ST-U and the ST+PST one (panel (D) of
Figure 12). Indeed temperatures, inclination, and hot spot
locations resemble the configuration injected for the ST+PST
model, while hot spot sizes and resulting geometries recall the
ST-U injection. Therefore, although the ST-U injected
configuration could be very well approximated within the ST
+PST model, the larger available parameter space guided the
inference process to a geometry that differs from it. For two of
the three data sets generated with the ST+PST model, we also
find a configuration that slightly differ from the injected one.
Our findings therefore seem to suggest that the complexity
introduced by the ST+PST model makes it harder for the
sampler to identify the correct parameter values. On the other
hand, mass, radius, and compactness are always well recovered
(see Tables 6 and 5); in particular we see that the posterior
shapes of these parameters seem to be independent of the
model adopted for the analysis. This is surprisingly different
compared to the situation found in R19, where the mass and
radius changed considerably depending on the model adopted
for the X-PSI analysis. Differently from the results of R19
(where the difference in log-evidence between the ST-U and
the ST+PST models was of ∼10 units), are also the values of
the various evidences. From Table 7 we notice that there is
never a decisive preference for one model compared to the
other, since, given a data set, the evidences differ by just a few
units in log. Different behaviors compared to the data suggest

Table 6
Mass and Radius Values (in Brackets) of the Maximum Likelihood ( )max ,
Maximum Posterior ( )max , and the Mean of the Marginalized 1D Posterior

Distributions for the SE 0.3, ET 0.1, LP 104, MM on Inference Run,
Employing the ST-UModel on a Data Set Generated with the Same Model and

Noise Realization 1

Mode 1 Mode 2

( )max 1.14 Me (10.9 km) 1.01 Me (8.9 km)

( )max 1.09 Me (9.0 km) 1.02 Me (10.1 km)

mean 1.12 Me (9.9 km) 1.09 Me (9.7 km)

25 A similar background was also found in R19.
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that our simulations do not capture all features present in the
data. At this moment, however we cannot conclusively assess if
these discrepancies are strictly related to the specific noise
realizations (see Section 5.1), limited to the two considered
parameter vectors, or signs of some more profound differences
(e.g., some aspect of the physics that is not being modeled).

5.2.1. Degeneracies and Multimodal Structure in the Posterior and
Likelihood Surfaces

A general discussion of degeneracies between model
parameters can be found in R19; here we comment on them
in relation to the specific findings of this paper. In the context
of mock PSR J0030+0451 NICER data, our inference runs
demonstrate the degeneracies between model parameters via
the presence of a multimodal structure in the posterior surface.

In this work we took advantage of the mode-separation
modality offered by MULTINEST. This has highlighted the
presence of a multimodal structure in the posterior surface,
which does not comes as a surprise given the different
configurations found in the nested models explored for
PSR J0030+0451 NICER data in R19. As we comment below,
naturally the extent to which degeneracies populate the
parameter space is correlated with the degree of multimodality
present in the posterior surface. This should be kept in mind
when comparing evidences between models; indeed higher
evidences could arise from the introduction of a more adequate
model to describe the data (i.e., for the presence of higher-
likelihood points) as well as from larger portions of the
parameter space rendering similarly good solutions to represent
the data.

For the ST-U inference runs, the difference in likelihood and
evidence between the various modes is large enough to
strongly prefer the correct mode; the performance of X-PSI in
recovering injected parameters mimicking the secondary mode
has, however, not been checked. Although the mass and radius
of the primary mode are always in reasonable agreement with
the injected values, Table 6 shows that the radius values
associated with the secondary mode change considerably
depending on the specific considered data set (and therefore
noise realization). This variability may be due to an inadequate
number of live points covering the specific mode, or due to
random fluctuations.

Looking instead at the ST+PST inference runs, we find a
different situation. As mentioned above, in two of the three
analyzed data sets, we are unable to find the injected geometry
(see Figure 12), even though all runs and both of the flagged
modes display mass and radius posteriors compatible with the
injected values (see Table 5 and Figure 9). Indeed multiple hot
spot configurations can give rise to very similar PSR J0030

+0451–like data sets. For all three runs in the left panel of
Figure 9, the injected configuration had a likelihood difference
from the maximum likelihood solution of only a few units in
log. This can also be understood, e.g., by looking at the bottom
plots of Figure 12. These plots represent the difference in
counts, per energy channel and phase bin, between the injected
data sets and the expected one, given by the maximum
likelihood sample of that specific run or mode (corresponding
to the hot spot geometry represented at the top of each panel).
Note that the largest differences occur where the typical counts
per energy channel and phase bin are a few hundred, so that the
relative difference is never more than a few percent (10%).
Given the number of counts characterizing these bins, this
percentage is always smaller than ∼twice the Poisson noise
standard deviation. This means that, assuming the same
properties of the revised PSR J0030+0451 NICER data set
(for more details, see Vinciguerra et al. 2023a), we expect no
significant difference between the data produced with the
various configurations (whose geometry is represented on the
corresponding top panel).
If we integrate these plots over phase bins i and energy

channels j, we can define the variable
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where c and d represent numbers of counts, respectively, for
inferred sample solutions and the injected data. For all four
cases (from panels (A)–(D)) presented in Figure 12, we find
that the integrated differenceD between the injected data d and
the expected counts predicted by the run or mode c (assuming
its maximum likelihood sample) is smaller than the difference
between the simulated data in the presence and absence of
noise ~Dsim 0.056. This highlights the presence of some
major degeneracies between our model parameters, as
introduced in Section 2.3, for a PSR J0030+0451–like data
set. We can use the top panels of Figure 12 to motivate some of
them. The similar values of likelihoods and evidences between
all of these configurations tells us that, with these simulated
data sets, we are not very sensitive to the details of the shapes
of either hot spot. For example, the top plots of panels (A) and
(C) show the arc of the PST region oriented in opposite
directions, and in both cases, a visual inspection of the
residuals does not highlight any anomaly. Similar pulses can
therefore be generated even when the parameters describing the
hot spot significantly differ (e.g., a difference in the arc
direction is rendered with the center coordinates of the
spherical caps having considerably different values). Similarly,
the emission from the ST hot spot seems to be captured by both
a circular hot spot as well as an arc, comparing the top plots of
panels (A) and (B). Moreover, we find that, in general, the most
likely configurations presented in this paper cluster around
values of inclinations between i∼ 40° and i∼ 60°; the limits of
this range also roughly correspond to the inclinations used to
simulate data, respectively, with the ST+PST and the ST-U
model. Focusing on the ST+PST inference results, Figure 12
shows that both inclination values can be recovered, indepen-
dently from the model used to generate the analyzed data. To
generate data comparable to the analyzed one, the hot spot
geometry needs to adapt to the different inclination values.

Table 7
Natural Logarithm of Evidences and Their Errors (as Reported by MULTINEST)

for Inference Runs with Settings SE 0.3, ET 0.1, LP 104, MM on

Data/Analysis ST-U ST+PST

ST-U −35657.1 ± 0.1 −35655.5 ± 0.1

ST+PST −35740.5 ± 0.1 −35736.2 ± 0.1

Notes. X-PSI low resolution is applied for all inference runs assuming the ST
+PST model. Different rows signify different models used to generate the
analyzed data; different columns correspond to different models adopted in the
inference runs.
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When we have lower inclination values, the hot spot, closer to
the equator, needs to have lower colatitude to still be visible to
an observer. Similarly, the emitting region located closer to the
South Pole needs to reach lower colatitude and cover a larger
area to still be detectable in the correct phase interval.

The noise shifts the peak of the likelihood away from the
true parameter values (as expected), and the sampler does not
always identify modes of comparable likelihood.26

The ST+PST analyses, for the data sets labeled with noise
realization 1 and 2, were unable to identify the likelihood peak
corresponding to the true hot spot configuration, despite them
having comparable likelihood values to the best-fitting samples
found. The absence of configurations similar to the injected one
in the posteriors, despite the comparable likelihood value,
reveal the inadequacy of the X-PSI and/or MULTINEST settings
adopted in our analyses for these specific cases. Indeed,
comprehensive tests, assessing the robustness of the obtained
results and the level of coverage of the parameter space for ST
+PST inference runs, are computationally demanding, and we
therefore decided to prioritize preserving compute time to carry
out these kinds of studies for the analysis of the upcoming and
future new data sets.

The inference run on data with noise realization 3 (the one
that recovered the injected geometry) instead collected samples
also resembling the configuration found as the main mode for
the other two noise realizations. Despite the difference of only a
few units in log-likelihood, however, this latter configuration
was not prominent enough to form a clear feature in the
posteriors.

Importantly, none of the solutions found, including those
pointing to a slightly different geometry compared to the true
ones, exhibit any anomaly in the residuals. Once we are assured
that the parameter space has been exhaustively explored and if
multiple solutions are revealed, it is possible to evaluate them
considering a broader context, including, e.g., radii inferences
from other NICER sources, constraints/indications coming
from independent phenomena, such as gravitational waves (see,
e.g., Raaijmakers et al. 2021), or even from theoretical
advancements. Alternatively, this independent information
could also be incorporated in follow-up test runs with the
application of tighter priors on the radius.

5.3. External Constraints

The impact of the multiple modes arising from the posterior
surface could be, at least in principle, mitigated by external
constraints, e.g., on mass, distance, and inclination (coming
from radio observations) or on the background spectrum.
Applying such constraints can also considerably reduce the
uncertainties on the inferred parameters, including radius. This
is clearly visible, comparing the sizes of the posteriors in
Figure 11 to those in Figure 9.

In the cases analyzed in this paper, however, tight constraints
on inclination end up biasing our results, even affecting the
radius inferences, which were otherwise correctly estimated. In
addition, these biased solutions do not exhibit any anomaly in
the residuals. Comparing the two ST+PST runs with
constrained inclination prior, we notice that increasing the
MULTINEST resolution settings (in particular, increasing the
live points and lowering the sampling efficiency) improves the
performances of our analysis. In particular, it increases the
likelihood of the maximum likelihood sample by a factor of
∼15 in log. The reason becomes apparent when inspecting the
posterior distributions of the SE 0.3, ET 0.1, LP 104, MM off
run. Here we find a clear bimodality: this inference run is able
to correctly identify the more complex hot spot; however, it
also shows the presence of an additional secondary mode
where the PST region is actually identified as an ST hot spot
and vice versa. This local maxima in the posterior surface
seems to dominate the progression of the less computationally
expensive run, which is therefore unable to reveal the
additional, higher-likelihood mode.
However, neither of our runs is able to identify the mode

associated with the correct solution. By checking the likelihood
value corresponding to the injected parameter vector, we notice
that in both cases, the log-likelihood of the injected solution is
greater than the maximum likelihood solution found by the
sampler, however only by a factor of ∼3 in log, for the SE 0.3,

Figure 11. Posterior distributions (smoothed by GetDist KDEs) of radius,
compactness, and mass. We report posterior distributions for data analyzed and
generated with the ST+PST model. With these inference analyses, we explore
the effect of external constraints on our analysis (see Section 3.3.2 for more
details). MULTINEST and X-PSI settings, as well as the model parameters
a priori constrained (M stands for mass, D for distance, and I for inclination),
are shown in the legend. For this plot, we used the data generated with noise
realization 1. Credible intervals and colored areas refer to the inference run
obtained with constraints on mass, distance, and inclination and using 104 live
points (also represented with dashed black lines). For clarity, here we also show
the 1D marginalized prior distributions on radius, mass, and compactness with
dashed–dotted lines. Including the inclination constraints (which is otherwise
not well recovered) shifts the inferred marginalized posterior distributions away
from the injected values of radius and compactness, highlighting the
multimodal structure and complexity of our posterior surfaces. See caption
of Figure 5 for further details.

26 Sometimes, the main solution found in our inference process significantly
differs from the injected one. By calculating the likelihood of the injected
parameter vector and inspecting the final posterior samples selected by
MULTINEST, it is possible to evaluate if a mode has been accounted for or not.
Sometimes, these investigations lead us to conclude that not all of the modes
with significant likelihood values have been considered by the sampler. It is
however possible for the prior volumes of these modes to be considerably
lower than the identified mode. This could, in principle, lead to a substantially
low impact of this solution on the evidence, whose estimate is the primary goal
of MULTINEST. However, this is something that cannot be guaranteed without
likelihood evaluations of the corresponding portion of the parameter space.
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ET 0.1, LP 104, MM off run. This suggests that another mode
is present in the posterior surface and that the relevant part of
the parameter space has not yet been adequately explored and/
or that the prior volume supporting the mode, found without
external constraints, has now been significantly reduced, such
that it is harder to identify it.

Indeed, neither inference run sampled a volume of the
parameter space close to the injected vector. This implies that,
with the adopted analysis settings, MULTINEST does not
adequately explore the parameter space and so fails to identify
solutions clustered around the injected parameter vector.

Although our work here has revealed that systematics can
occur in the PPM analysis of NICER data, it also highlights
that these can be mitigated by convergence tests, proving that
the parameter space has been exhaustively explored. These
should include increasingly more computationally expensive
runs, with more and more stringent sampling requirements, as
well as repeated inferences, assessing the variability due to the
random processes, and posterior predictive distribution tests.
Since we find that, in general, mass and radius are well
recovered if no further constraints are added (even when the
geometry parameters are not), our findings also suggest it may
be beneficial to accompany inference runs with tight constraints
on geometry parameters, when these are available, with runs
that do not consider them. We are now prioritizing computer

resources to ensure that we can carry out such targeted and
comprehensive convergence tests on upcoming real data sets.
In the two ST+PST inference runs (with tight constraints on

the inclination prior) considered here, applying background
constraints would not have improved our findings, since the
recovered background is always very similar to the injected one
(see Figure 13). This, however, is not necessarily the case for
the real data. On the contrary, if the background constraints
could cut the level of background found with these analyses, it
would eliminate a large group of possible—and possibly
similarly good—solutions, maybe uncovering a prominent but
less ambiguous portion of the parameter space. NICER
background constraints have been applied on NICER data sets
for PSR J0740+6620 (Salmi et al. 2022) and are currently
being adopted for NICER analyses on new, and expanded
NICER data sets for multiple NICER sources.
Similar constraints could also be provided through observa-

tions of NICER sources by other X-ray (and in particular,
imaging) telescopes. For example, in Riley et al. (2021) and
Miller et al. (2021), the portion of the NICER data attributed to
the thermal emission of PSR J0740+6620 was constrained by
the XMM-Newton observations. Since coherently including
XMM-Newton data into X-PSI inference has been proven very
beneficial, this procedure is also planned for other NICER
sources.

Figure 12. Results for three different ST+PST runs: panels (A) and (B) refer to the SE 0.3, ET 0.1, LP 104, MM on, LR run on data generated with the ST+PST model
and noise realization 1; panel (C) to the SE 0.3, ET 0.1, LP 6 × 103, MM on, LR run on data generated with the ST+PST model and noise realization 3; and panel (D)
to the SE 0.3, ET 0.1, LP 104, MM on, LR run on data generated with the ST-U model and noise realization 1. Mode numbers are specified only for analyses
employing the mode-separation modality (also referred to as mode-separation variant). Panel (B) corresponds to the maximum likelihood sample belonging to the
secondary mode; all other panels refer to the maximum likelihood sample of their respective inference runs. Top panels: schematic representation of the hot spot
configurations, as seen from Earth. Bottom panels: difference in counts between the injected data and the expected counts corresponding to the considered sample of
their respective runs (for reference, in the injected data the maximum count per phase bin and channel is ∼700). The small differences in counts, always smaller than
∼twice the Poisson noise standard deviation, imply that significantly different configurations and parameter values can arise from very similar data sets, assuming the
current properties of the PSR J0030+0451 NICER observations.
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5.4. Implications for PSR J0030+0451

Our study demonstrates that the analysis (X-PSI and
MULTINEST) settings need to be tailored to each specific data
set and applied assumptions. In particular, our work places
some of the findings, reported in R19, in a broader context. The
new uncertainties and complications of the analysis process
revealed in this study imply that PSR J0030+0451 NICER
results and their interpretation need further investigations. Such
studies are crucial to validate the robustness of the implications
on the EoS and the magnetic field structures derived from
previous PSR J0030+0451 NICER works. This is the main
target of the upcoming reanalysis of NICER data (Vinciguerra
et al. 2023a).

5.5. Implications for PSR J0740+6620

PSR J0740+6620 is the second NICER source, whose PPM
analyses have been publicly released by the NICER collabora-
tion. The inference of PSR J0740+6620’s radius has crucial
implications for the EoS, given the very high mass,
independently inferred from radio observations of
2.08± 0.07Me (Fonseca et al. 2021). The same study has
also provided meaningful constraints on distance and inclina-
tion. This information has been used in the X-PSI analyses of
PSR J0740+6620 NICER data sets (Riley et al. 2021; Salmi
et al. 2022). While no simulation has yet been published to test
the recovery performance of X-PSI for similar parameter
vectors, we expect these studies to have delivered accurate
results (T. Salmi et al. 2023, in preparation). In Riley et al.
(2021), PSR J0740+6620 was analyzed with very different
numbers of MULTINEST live points, proving stability in the
solution found and the absence of other high-likelihood modes
(a high number of live points, 4 × 104, was, in the end, used for
production runs to correctly render the width of the posteriors;
however, no significant shift was found compared to runs with
fewer live points). This more detailed analysis was possible for
PSR J0740+6620, and not for PSR J0030+0451, because of its
fewer counts, lower signal-to-noise, ratio and the simpler

model (the ST-U model was indeed identified as the headline
model).

5.6. Caveats

The simulations presented in this paper are far more
exhaustive, and hence computationally expensive, than those
carried out previously, but are still finite in scope. From them,
we have learned that the noise greatly impacts our results,
changing, in particular, the width of our posteriors as well as
their sensitivity to the analysis settings. The extent of this effect
however could not be fully inferred with our limited resources.
Our findings could also be significantly affected by the

particular choices of parameter vectors and background spectra
adopted to simulate the considered data sets. Our sensitivity to
such choices has not been tested here; however, the difference
in behavior found in this paper, compared to the results
reported in R19 (e.g., in the effect of using different models on
radius inference and evidence), suggests their impact could be
significant. This difference in behavior could also lie only in
the parameter vector used for the ST+PST model. This
parameter vector was indeed found in a low-resolution
inference run (Vinciguerra et al. 2023a); while data were then
built with it at higher resolution. This change might have
produced some features in the simulated data sets that have no
correspondence in the real data and may therefore explain the
different behaviors (in particular for the evidence comparison
with different models) between the simulated and real data (see
evidence discussion in R19). Indeed, when simulating the ST
+PST data, the inferred exposure time differs from the real one
by ∼50 s, in contrast with only 0.01 s in the case of the ST-U
model and parameter vector.
We also highlight here that in all of the tests presented in this

work, the physics used to produce the synthetic data sets was
known and mostly (except for the ST-U inference runs on data
produced with the ST+PST model) captured by the inference
setup. This is not necessarily the case for the analysis of real
data obtained by NICER, where the physics is sometimes

Figure 13. Background figure for the ST+PST inference run SE 0.3, ET 0.1, LP 104, MM on, LR on data created with the same model and noise realization 1. In
shades of pink, from the lightest to the darkest, we highlight the contribution to the data in counts per channel of the primary hot spot, the secondary hot spot, and the
background. The solid pink and dashed fuchsia lines represent, respectively, the total counts per channel expected according to our model and found in the data. With
the solid purple line, we show the background correspondent to the maximum likelihood sample of the inference run. From the strongest to the dimmest purple
regions, we show the ±1, ±2, and ±3 standard deviation regions. The solid black and the dashed gray lines (mostly overlapping) show the background added to the
hot spot contribution to obtain the simulated data with the ST+PST and ST-U models, respectively.
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assumed (e.g., for the atmosphere composition) and sometimes
approximated (e.g., for the specific hot spot shapes).

5.6.1. Correlations

To correctly interpret our results, we need to be aware of the
various correlations between the parameter models. For
example, when we presented the percentage of parameters
recovered within the ∼68% credible interval and the relative
uncertainties, we had to assume that all of the parameters were
independent. This is, however, not the case and can have
considerable impact; for instance, if a certain inclination is
favored by the sampling process, this will likely also shift the
values of hot spot centers and sizes, as mentioned in
Section 5.2.1. Moreover, as explained in the same section,
we can obtain very similar emitting patterns with significantly
different parameter values. For example, our tests seem to hint
at weak sensitivity of our analysis to the smaller details of the
hot spot shapes. Some emitting arcs could then be placed in
either the two opposite directions without considerably
changing the counts per channel and phase bin detected by
NICER. However, the parameter values describing these two
configurations would significantly differ from one another.
These, at least partly, explain the poorer parameter recovery
found for the tested ST+PST configuration.

Correlations should also be considered, when using the
results presented by the NICER collaboration. If one is
interested in a single quantity, it is appropriate to use the
median and credible interval reported for that 1D posterior of
that model parameter (and marginalized over all of the others).
However, for reproducing a configuration that well represents
the data, it is instead advisable to account for these correlations
by selecting one (or more) appropriate specific sample(s).
Tables 6 and 5 show, with a specific example, how different the
values of mass and radius can be for different modes and
different samples, and how different they can be compared to
properties describing their 1D posteriors, such as the mean.
Even considering only the main mode, opting for the maximum
likelihood sample or the maximum posterior one would make a
difference to the NS's radius of almost 2 km. These considera-
tions are particularly relevant when the posteriors show
multimodal structures with similar probability and therefore
figures describing the overall distributions as means and
medians could take values that are totally inadequate (i.e.,
with very low posterior support) in reproducing the data.

6. Summary and Conclusions

This paper investigates the performance of X-PSI, one of the
two main pipelines currently in use within the NICER
collaboration for PPM. Simulation studies are particularly
crucial to validate the results obtained for sources lacking
external constraints, as is the case for PSR J0030+0451. This
study expands on work presented in Riley (2019) and
Bogdanov et al. (2021), by focusing on simulations that
resemble PSR J0030+0451 NICER data with ST-U and, for
the first time, ST+PST models. The former is the simplest
model able to reproduce PSR J0030+0451 NICER data set
with acceptable residuals (R19); it describes each of the two hot
spots with a spherical cap of uniform temperature. The latter
was the model favored by the evidence in the study of R19;
compared to the ST-U model, it introduces a third element that
masks the emission from one of the two hot spots, giving it a

more complex shape. This work presents the first investigation
of parameter recovery for the ST+PST model, on which the
headline results of R19 are based. We also study the impact of
noise, analysis settings, external constraints, and lack/excess of
model complexity. Below we list a summary of the most
relevant lessons learned.

1. Focusing on mass, radius, and compactness, our findings
validate the inference analyses performed by X-PSI for
both models;

2. The overall parameter recovery performance of X-PSI for
the ST-U inference runs is consistent with expectations
and supports the results of Riley (2019) and Bogdanov
et al. (2021);

3. The overall parameter recovery from ST+PST runs is
challenged by the increased complexity: degeneracies and
correlations complicate the performance evaluation;

4. For both models, the posterior surface is often character-
ized by a multimodal structure. Possible future strategies
to mitigate this challenge (once assured that the parameter
space has been adequately explored) could include
constraints based on independent findings (coming from
additional NICER sources, other phenomena, or theor-
etical development) that could isolate the correct mode;

5. The specific noise realization can significantly impact the
inference process. In particular, it can considerably affect
our sensitivity to settings and the widths of the posterior
distributions. There is, therefore, an additional source of
scatter in the uncertainties on mass and radius inferences
that can affect predictions such as those proposed by
Psaltis et al. (2014);

6. As expected, the noise realization can also drive the best-
fitting solution away from the truth;

7. We can potentially save computational resources by
adopting the X-PSI low-resolution settings (as described
in Section 3) without compromising the inference
process;

8. With the adopted settings and data sets, MULTINEST does
not always adequately sample the parameter space to
reveal all of the maxima of the posterior surface (see ST
+PST inference runs); residuals, however, do not show
any prominent features. A sufficient exploration of the
parameter space, through multiple runs with different
analysis settings and based on simulated data, is therefore
needed to assure the robustness of X-PSI results;

9. In light of the uncovered multimodal posterior surface
often present in our inference analyses, evidences should
be carefully evaluated. They also do not always help in
identifying the most adequate model complexity (i.e.,
sometimes the difference in log-evidence between the
ST-U and the ST+PST model is not significant);

10. PSR J0030+0451–like data sets could be similarly
reproduced by many diverse configurations, without
showing any particular feature in the residuals;

11. There are a few discrepancies between the behavior of the
analyses performed on the simulated or real data sets. For
example, there is now a much smaller difference in log-
evidence between the runs using the ST-U and ST+PST
models, and the mass and radius of a specific data set
seem to be recovered independent of the model used for
the inference analyses); both of these findings differ from
what was reported in R19). Given an adequate amount of
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resources, a more comprehensive set of parameter vectors
should be analyzed;

12. As expected, introducing tight constraints on mass,
distance, and inclination can noticeably reduce the radius
uncertainties;

13. Because of the multimodal structure of the posterior
surface, applying tight constraints on parameter priors
could potentially introduce biases in our results. In this
work, we see it clearly when we adopted mock
constraints on PSR J0030+0451 inclination and MUL-
TINEST failed in identifying the correct solution (with the
tested settings). The better likelihood associated with the
injected parameter vector, however, suggests that more
adequate sampling settings would allow for the identifi-
cation of the main mode, corresponding to the injected
configuration;

14. The tests done with an increasing number of live points in
Riley et al. (2021) suggest that the radius inferences
performed on PSR J0740+6620 NICER data sets are not
affected by the same challenges identified here for the
considered synthetic PSR J0030+0451–like data sets.

Our tests have therefore identified noise and multimodal
structure in the posterior (mostly due to degeneracies between
the model parameters) as the two most prominent challenges of
PPM analyses conducted with X-PSI. Our findings also
identified convergence tests, tailored to the specific data set
and analysis of interest as a possible solution to both of them.
These convergence tests will be aimed at assessing whether the
parameter space is adequately explored and the uncovered
posterior faithfully reflects the real one. They will include
multiple runs with the same data set and model and
increasingly stringent sampling settings (and, in particular,
with an increasingly larger number of live points) and repeated
runs to quantify the variability due to the randomness of the
processes involved. We also plan to implement posterior
predictive distribution checks and, on a longer timescale, to
also adopt different and more sophisticated sampling algo-
rithms (such as UltraNest; Buchner 2021). Although we will
always be computationally limited, we think that these tests
will help us to build a more solid interpretation of our results
and obtain an overall understanding of the complexity of the
posterior surface. Given the results presented in this work, we
plan to accompany future analyses of NICER data with a few
inference runs on data simulated near the recovered solution.
These tests will require additional computational resources to
ensure the robustness of NICER findings on PPM.

Despite the caveats listed in Section 5.6, this work shows
that X-PSI recovers mass, radius, and compactness according
to expectations, when the settings guarantee the convergence of
the sampling procedure.
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