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ABSTRACT 11 

Aim Estimating environmental suitability from species distribution data is crucial in defining 12 

spatial conservation measures. To this end, species distribution models (SDMs) are 13 

commonly applied, but seldom validated by completely independent data. Here we use data 14 

on individual tracks derived from electronic tags as an alternative means of validating SDM 15 

outputs.   16 

Location West coast of Scotland, NE Atlantic. 17 

Methods We used a binomial generalized additive model (GAM) to predict the 18 

environmental suitability for flapper skate (Dipturus cf. intermedia) in Scottish waters. The 19 

GAM modelled relative habitat usage as a function of environmental variables using 20 

presence/absence data obtained from scientific trawl surveys. Additional data obtained from 21 

electronic tags attached to six individual flapper skates were used to estimate individual 22 

tracks using a tidal based geolocation model. Concordance between individual tracks and 23 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberdeen University Research Archive

https://core.ac.uk/display/82969738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

GAM-predicted maps of relative habitat usage (RHU) was tested by comparing predicted 24 

RHU between estimated tracks and randomly generated tracks.  25 

Results Environmental suitability for the flapper skate was driven by depth and distance from 26 

the coast in the SDM. We found high spatial concordance between the estimated tracks of the 27 

six tagged individuals and regions of high RHU predicted by the SDM.  28 

Main Conclusions Integrating outputs from an independent data source allowed us to 29 

validate predictions from a species distribution model (SDM). The integration of individual- 30 

and population-level data sources increases confidence in the outputs being used to define 31 

spatial conservation measures. The information on flapper skate distribution provided by this 32 

study provides a useful framework for considering spatial conservation measures for this 33 

species. 34 

 35 

Keywords Data integration, Dipturus cf. intermedia, generalised additive model, individual 36 

movement, model validation, species distribution model, tidal geolocation model. 37 

 38 

(A) INTRODUCTION 39 

Describing how a species is distributed in space, defining its preferred habitat and 40 

establishing which environmental characteristics best support its populations, are key to 41 

understanding the ecology of threatened or declining species (Guisan & Zimmermann, 2000) 42 

and planning for their conservation (Pulliam, 2000). Commonly a species’ distribution is 43 

obtained from coupling field data with corresponding environmental variables within a 44 

modelling framework (Austin, 2002; Aarts et al., 2008). One of the main advantages of 45 

species distribution models (SDMs) is that they may be used to generate predictions for the 46 

species distribution beyond the area originally sampled, provided the prediction is performed 47 
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within the environmental range sampled (Elith et al., 2010). SDMs thus have the potential to 48 

inform broader scale management which is especially important for marine species where it 49 

is often difficult and costly to sample the entire range of a species.  50 

In their most simple form SDMs couple data on a species distribution with environmental 51 

variables to quantify the ecological niche of the species, for example, Hutchinson’s realized 52 

niche or Grinnell’s fundamental niche (Guisan & Thuiller, 2005). In most cases, presence-53 

only observations are available to define a species habitat preference, limiting the realism and 54 

precision of predictions and increasing their uncertainty (Elith & Leathwick, 2009). Precision 55 

and the reliability of predictions are affected by sample size as well, as small sample sizes 56 

can be a possible source of instability that will increase uncertainty of model outputs (Guisan 57 

& Thuiller, 2005; Barry & Elith, 2006).  58 

Statistical tools commonly used in SDMs include random forest regression trees, MaxEnt 59 

(Phillips et al., 2006), generalized linear models (GLMs) and generalized additive models 60 

(GAMs). GAMs have been shown to perform as well (Oppel et al., 2012), if not better 61 

(Moisen & Frescino, 2002; Aertsen et al., 2010), than other predictive models. GAMs are 62 

more flexible in fitting complex non-linear responses (Aarts et al., 2008), and can 63 

compensate for over-fitting through the use of a penalized likelihood (Venables & Dichmont, 64 

2004).  They do, however, require a high number of degrees of freedom in order to perform 65 

well and give reliable predictions (Wood, 2006; Drexler & Ainsworth, 2013). Thus, for 66 

predictions on environmental suitability obtained by GAMs, as well as for those obtained 67 

using other statistical or machine learning approaches, their reliability should be tested 68 

through field validation or by finding alternative ways of testing model outputs. 69 

Model validation is important when extrapolating model outputs to non-sampled areas (Elith 70 

& Leathwick, 2009) and specifically when the ecology of the species of interest is poorly 71 

known. As field validation requires entails significant economic and time investment, test 72 
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datasets (Drexler & Ainsworth, 2013), testing against a null model (Raes & ter Steege, 2007) 73 

or bootstrapping (Elith & Leathwick, 2009) have been used as alternative methods. 74 

Comparing model outputs and the spatial distribution of  independent data obtained from 75 

different sampling sources has been used as an  option to validate model outputs (Grubbs & 76 

Musick, 2007), to reduce estimate and prediction uncertainty (Petit & Lambin, 2002; Jetz et 77 

al., 2012) and to help cross-validate outputs of models obtained from independent sets of data 78 

(Rogers et al., 2014).  79 

There has been a rapid increase in the volume of spatial data derived from electronic tagging 80 

devices, often referred to as ‘biologgers’, on individual movements of animals across a broad 81 

range of taxa. Following the definition in Ropert-Coudert et al., (2009), biologgers comprise 82 

storage tags, archival tags and electronic data recorders. Many of the earliest applications of 83 

this approach were on seabirds, pinnipeds, cetaceans and sea turtles (Ropert-Coudert et al., 84 

2009). The rapid uptake of electronic tagging for marine species was due to the benefits 85 

provided from observations of underwater behaviour and the gathering of positional 86 

information at sea. Tagging of fish species, however, has lagged behind because of the 87 

greater difficulty of acquiring reliable positional information on sub-surface species. 88 

However, the advent of geolocation models, either using tidal signatures or light intensity 89 

levels, is now resulting in increased knowledge on the spatial ecology of an increasing 90 

number of fish species of both economic and conservation concern, including pacific bluefin 91 

tuna (Whitlock et al., 2012), cod (Neuenfeldt et al., 2013), white sharks (Jorgensen et al., 92 

2009) and tiger sharks (Werry et al., 2014). Geolocation models use contemporaneous 93 

environmental information, such as light level and depth, to estimate the individual’s most 94 

likely geographical locations at a certain time-step. Assuming that an individual spends more 95 

time in its preferred habitat, estimated individual tracks are an ideal independent source of 96 

information to infer environmental suitability and to test predictions obtained from SDMs.  97 
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This study examines the distribution of flapper skate (Dipturus cf. intermedia) off the west 98 

coast of Scotland. The flapper skate is listed in the IUCN Red List of Threatened Species as 99 

“Critically Endangered” (www.iucnredlist.org). As a slow growing, late maturing and low 100 

fecundity species, its population growth rate is highly sensitive to fishing mortality (Brander, 101 

1981). The species suffered a rapid decline in the last 40 years with landings falling by 90 per 102 

cent (Du Buit, 1977; Brander, 1981; Philippart, 1998). The flapper skate is now only 103 

occasionally found in the North Sea, and its former distribution contracted throughout the 104 

period, leaving a number of relict populations off the West coast of Scotland (Brander, 1980; 105 

Walker & Hislop, 1998; Daan et al., 2005). In order to estimate the potential for this species 106 

to recolonize its former range, it is fundamental to understand the environmental influences 107 

determining its distribution. To this aim we used SDMs to define environmental suitability 108 

for the flapper skate off the west coast of Scotland from presence-absence data obtained from 109 

trawl survey data, and used individual geolocation estimates from electronic tagging devices 110 

to validate model predictions. The aim of this study was to demonstrate the potential of 111 

integrating information from individual tracking data (obtained from tidal geolocation 112 

modelling of electronic data storage tagging devices in this study), for the validation of SDM 113 

predictions. 114 

(A) METHODS 115 

(B) Species distribution data 116 

Presence-absence data on the flapper skate were obtained from several trawl surveys 117 

including the Marine Scotland Science northern shelf monkfish survey and the International 118 

Bottom Trawl Survey (Fig.1). The Dipturus batis complex was identified as two species 119 

(Dipturus intermedia and Dipturus flossada) in 2010 (Griffiths et al., 2010; Iglésias et al., 120 

2010), and therefore data on the flapper skate were generally available only from 2010 121 

onwards (330 records), although a few records (65) were obtained from surveys conducted in 122 

http://www.iucnredlist.org/
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2003, 2004 and 2005 during which catch records were matched to individual photographs 123 

which allowed identification to the species level. The surveys each used a different trawl gear 124 

and this may have led to different catchabilities for flapper skate (Appendix S3). The areas 125 

covered by the different surveys did, however, broadly overlap, just that some had a more 126 

restricted areal coverage than others.  127 

(B) Predictor variables 128 

The environmental variables used as predictors in the SDM model were all projected in UTM 129 

29N (WGS84) and all had the same resolution of 30” (790.2m). Environmental variables 130 

included: trawl shot latitude and longitude, depth, slope (reported as angle measures), mean 131 

salinity, mean temperature, distance from the coast, seabed composition (sediments) and gear 132 

type. Depth and slope were obtained from OCEANWISE 6” (www.oceanwise.eu) and 133 

INFOMAR (www.infomar.ie); depth was square root-transformed for modelling purposes as 134 

the raw data had a skewed distribution. Salinity and temperature were obtained from the 135 

freely available oceanographic model EUROPEAN NORTH WEST SHELF – OCEAN 136 

PHYSICS REANALYSYS FROM METOFFICE (1985-2012) (www.myocean.eu). 137 

Euclidean distance to the nearest coast was calculated in ArcGIS 10. The sediments layer was 138 

extracted from the British Geological Survey database (European Marine Observation and 139 

Data Network, EMODNET, www.emodnet-geology.eu) and is represented by seven classes 140 

of sediments: coarse sands, mixed sediment, mud to sandy mud, rock, sand to muddy sand, 141 

seabed (unknown sediment) and till (mixed sediments). Preparation of the final dataset to be 142 

used for predictions was performed in R 3.1.1 (R Core Team, 2014). 143 

(B) GAM fitting 144 

A binomial GAM with a logit link function was fitted using the “mgcv” package in R (Wood, 145 

2006, 2011). Thin plate regression splines were used as smoothing functions for the 146 

http://www.oceanwise.eu/
http://www.infomar.ie/
http://www.myocean.eu/
http://www.emodnet-geology.eu/
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continuous environmental predictors, while gear type was added as a factor variable and kept 147 

in all models in order to account for the different catchability of gears (Appendix S3). The 148 

effect of year was also included in the model to test for an effect of yearly variation in the 149 

presence of the species due to factors concerning the population dynamics of the species and 150 

not necessarily the variation of environmental covariates. In order to determine which 151 

covariates best predicted the distribution of the species model selection was done through 152 

minimizing the Akaike Information Criterion (AIC). We looked for potential spatial 153 

autocorrelation in the residuals by fitting generalized additive mixed models (GAMM) 154 

without a spatial correlation structure and with exponential and spherical correlation 155 

structures. We compared the models by checking the estimated range (the extent to which the 156 

correlation is detected across space or not) and the nugget effect (the level of correlation 157 

between two random points taken in close proximity). A confusion matrix was calculated in 158 

order to estimate accuracy, sensitivity (probability of true positives) and fall out (probability 159 

of false positives) proportions in model predictions through the library “PresenceAbsence” in 160 

R (Freeman & Moisen, 2008). Potential colinearity between covariates was examined with 161 

Pearson’s correlation coefficient and with the parameter correlation matrix from the model. 162 

To test its robustness, the best model was rerun after excluding extreme values of covariates 163 

(identified as outliers relatively to the central distribution of the covariate) from the dataset to 164 

test if the estimates would hold to the data reduction. The final model was run with the whole 165 

dataset as the exclusion of extreme values did not affect the results. Model predictions were 166 

first produced as probability of presence and then as relative habitat utilisation (RHU) as 167 

explained in the “Model validation” section. These were both produced at a 2km resolution to 168 

match the geolocation model resolution. 169 

(B) Geolocation modelling 170 
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Independent data from six data storage tags (DSTs) attached to common skate and recovered 171 

between 2012 and 2014 were used. DSTs were deployed on 18 individuals in an area known 172 

as the Sound of Jura (4 recaptures) and on 29 individuals from an area known as the Stanton 173 

Banks (2 recaptures). DSTs were attached externally to the fish (Neat et al., 2015) and 174 

recorded hydrostatic pressure and environmental temperature every 2 minutes. For the 175 

biological characteristics of the tagged individuals and the total length of the time series see 176 

Appendix S1 in Supporting Information (where S indicates Supporting). Notably, three 177 

(7968, 7967 and 7972) of the six individuals tagged with DSTs were also tagged with 178 

acoustic transmitters connected to a set of acoustic receiver stations which were active for 179 

one year in the northern section of the Sound of Jura (Neat et al., 2015).  180 

Time series of pressure levels obtained from the DSTs were converted to time series of depth 181 

values, which were then matched to tidal time series for UK waters at 7km resolution  using 182 

an adapted version of a hidden Markov model, as developed by Pedersen et al. (2008). This 183 

was used to geolocate flapper skate tagged with data storage tags from the point of release to 184 

the point of recapture. As outputs, for each day at liberty, a probability distribution (most 185 

probable track) was constructed using a model constrained by the maximum depth, tidal 186 

geolocation estimates (Hunter et al., 2003) and an automatically selected diffusivity value 187 

(Pedersen et al., 2008). Briefly, the model requires four parameters: variance, amplitude, 188 

mean square error (between the tidal signal recorded by the animal and the actual tidal cycle) 189 

and a tidal time window in which to search for the tidal signal. The optimized values of these 190 

parameters were estimated by Pedersen et al. (2008). The tidal grid was constructed using the 191 

Oregon State tidal inversion model with seven tidal constituents (M2, S2, N2, K2, O1, K1 192 

and M4) as defined in Pedersen et al. (2008). On days where there was no tidal signal (i.e. the 193 

fish was away from the seabed and so no tidal signal could be selected), bathymetric depth 194 

(Gebco bathymetry) was used to exclude recorded positions shallower than the maximum 195 



9 
 

depth. The spatial extents of the model of release and recapture locations at a resolution of 196 

approximately 7km, were  -32W, 35N, 11E, 70N. 197 

 A second output of the model is the average of all possible tracks an individual could have 198 

covered during the tagging period, producing a density map called a utilization distribution 199 

map (UDM). As the UDM is a distribution of all possible tracks predicted by the model, it 200 

directly includes a measure of the uncertainty about the true track. The UDM was used to 201 

compare the geolocated locations against the predicted probability of presence obtained from 202 

the GAM. The UDM is a probability map where each cell has a value between 0 and 1 203 

(Σ = 1), the higher the value the greater the probability the individual spent time in that cell. 204 

Because the model calculates a probability for each cell being part of the total grid (the final 205 

size of the grid is optimized by the model based on the diffusivity value (Pedersen et al., 206 

2008)) the final output needs to be rescaled after excluding probabilities that are too close to 207 

zero (therefore far from the actual individual track), which would shrink all probabilities 208 

towards zero (see Appendix S1). This output is produced at a 2km resolution. 209 

(B) Model validation    210 

To obtain predictions from the GAM model that would be comparable to the geolocation 211 

estimates we estimated RHU (relative habitat utilisation). RHU was calculated as: 212 

 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = exp (𝑔𝑔(𝑥𝑥))
∑ exp (𝑔𝑔(𝑥𝑥))𝐷𝐷

  213 

where g(x) is the linear predictor of the GAM at location x part of study domain D, so that 214 

RHU is on a scale proportional to time spent by an animal at that location and to density of 215 

observations (Aarts et al., 2012). The RHU was compared to geolocation estimates in three 216 

separate steps. First, in order to facilitate an initial visual estimation of whether the tracks 217 

produced by the geolocation model covered either high or low predicted RHU obtained from 218 

the GAM, the individual tracks obtained from the UDM predictions were plotted on top of 219 
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the RHU map. Secondly, the distribution of RHU values for an area surrounding each 220 

individual track (i.e. the area is defined by an individual track plus a 2’ buffer) was compared 221 

to the distribution of RHU values extracted at track locations, in order to compare which 222 

values of the predicted distribution were actually selected by the individual along its track. 223 

This process was implemented separately for each individual. Lastly, to verify that the 224 

selection of high probability of presence areas by individual tracks was effectively better than 225 

a random selection of areas, we assimilated the RHU for the whole area to a likelihood 226 

distribution (termed ‘RHU-likelihood’ for simplicity thereafter). This last process was 227 

considering all the individual tracks together at once. To account for the probability assigned 228 

by the geolocation model to each track cell belonging to the UDM, and to give each 229 

individual equal weight in the analysis, track cells were resampled with replacement for 230 

2,000 draws (as this is the size of the locations of all the tracks put together) proportionally to 231 

cell probabilities’ value (“standardized tracks”) of the UDM. We then performed 10,000 232 

simulations of random track locations to calculate their respective RHU-likelihood. The final 233 

output was than the difference between the sum of the log(RHU-likelihood) at the 2,000 234 

observed track locations and the sum of the log(RHU-likelihood) at 2,000 simulated locations 235 

for each of the 10,000 randomly generated sets of tracks. In order to preserve the internal 236 

spatial structure of the animal tracks, simulations were done by anchoring six points 237 

generated at random over the study area which would define the new centroid of each 238 

individual track (see Appendix S2). The random tracks were generated as a set of locations 239 

with the same shape of the original tracks but centred around the position defined by the 240 

randomly generated centroid. When parts of random tracks were generated on land these 241 

locations were excluded and the section of the track generated at sea was resampled with 242 

repetition until the original sample size of the track was reached. The 10,000 simulations 243 

were performed twice using two nested spatial domains to produce both a regional and a 244 



11 
 

more stringent local test of the model performance. The regional polygon was drawn around 245 

the area covered by the raw data of presence-absence (Fig.1), and the local polygon was 246 

drawn around the area covered by the geolocated tracks (see Appendix S2). The use of two 247 

spatial scales allowed us to assess both the reliability of our predictions and the 248 

representativeness of the geolocation estimates. 249 

(A) RESULTS 250 

 (B) GAM fitting 251 

The best model defining the probability of presence of flapper skate included trawl latitude, 252 

trawl longitude, √depth, distance from the coast and gear type (Table 1) and explained 33% 253 

of the variance (n=395) (for details see Appendix S3). Trawl latitude and longitude were not 254 

significant in the model, but were kept in as their exclusion did not improve the AIC 255 

significantly (Table 1). There was no significant spatial autocorrelation in the residuals (see 256 

Appendix S3). Model accuracy calculated with the confusion matrix was 63%, from a fall-out 257 

value of 0.34 and a sensitivity of 0.78 (see Appendix S3), suggesting that model predictions 258 

are more accurate than at random. Model predictions suggest that flapper skate is a species 259 

that concentrates on inshore areas, showing the highest probability of presence in the sea 260 

lochs of the west coast of Scotland and in areas surrounding banks and islands (Fig.2). 261 

Probability of presence is limited by the extent of the continental shelf and the depths of the 262 

Rockall Trough, but continues to be high in the North Channel and around the Shetland 263 

Islands (Fig.2). As shown by the model outputs, flapper skate distribution is driven by depth, 264 

with low probability of presence at depth < 100m and decreasing again at depths > 400m, 265 

although the variance surrounding the estimates increases in the 300m-600m range where 266 

data points are more scattered (Fig.3). Probability of presence decreases strongly as distance 267 

from the coast increases (Fig.3). Therefore this species seems to prefer areas that can reach 268 
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high depths but at the same time are surrounding islands or are constrained within islands and 269 

the main land. 270 

 (B) Geolocation modelling 271 

The geolocation model obtained a number of tidal matches for each individual (Fig.4). The 272 

longer the time frame within which each individual was tracked the more information was 273 

available to describe the usage area of each individual. With the exception of individual 8828, 274 

which was recaptured after only two weeks at liberty, all other individuals were at liberty for 275 

between six months and one year. Four individuals spent most of their time where they were 276 

originally tagged, while individual 7968 moved south towards the top of the North Channel, 277 

and 8828 moved north. Individual 8794 was the only individual that had probabilities of area 278 

usage always lower than 0.1 and shows the largest area coverage across time (Fig.4). Thus 279 

our results across these six individuals suggest that the output probabilities produced by the 280 

geolocation model are highly affected by the time spent at liberty, the area covered by an 281 

individual and its level of activity during this time. Therefore, we suggest these outputs 282 

cannot be readily compared between individuals or with other measures of probabilities 283 

obtained from different modelling procedures. Data from the acoustic stations that detected 284 

individuals 7968, 7967 and 7972 confirm the reliability of the tracks shown by the 285 

geolocation model (see Appendix S4) as we can directly compare time steps at which each 286 

individual was recorded by the acoustic station and predicted in the same area by the 287 

geolocation model. This supports our suggestion that geolocation models’ outputs have a 288 

high potential as a validation tool for predictions obtained from other modelling procedures. 289 

(B) Cross validation 290 

The visual exploration of locations estimated by the geolocation model and the corresponding 291 

area extracted from the GAM predictions (Fig.5) showed a high overlap between the UDM 292 
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predictions and the cells with the highest RHU values predicted by the GAM. The values 293 

corresponding to the single track locations for all six individuals were always distributed 294 

among the highest RHU values (Fig.6). At the regional scale, the likelihood that the observed 295 

geolocated tracks coincided with areas of high values of RHU was always higher than the 296 

likelihood that the randomly generated tracks would fall over high RHU values (Fig.7). At 297 

the local scale, a very similar result was obtained (this second result is not shown).  298 

(A) DISCUSSION 299 

This study demonstrated the potential for integrating very different types of data to obtain and 300 

validate environmental suitability surfaces. These approaches typically deal with data 301 

collected across different spatial scales, involve very different sample sizes and provide 302 

different types of information and, as such, are generally used to address very different 303 

research questions. However, we demonstrate that the comparison of the different data and 304 

model approaches has considerable potential in validating reciprocal outputs, improving their 305 

reliability and strengthening inference. Predicting species distribution from model outputs 306 

carries varying levels of uncertainty depending on the quality and amount of data and the 307 

availability of covariates and movement parameters that could improve precision and 308 

accuracy (Elith & Leathwick, 2009). Uncertainty increases around SDMs outputs when 309 

information on dispersal characteristics is lacking in the modelling procedure (Pulliam, 2000) 310 

or the model is predicting far from the range of available data (Venables & Dichmont, 2004; 311 

Elith et al., 2010). Furthermore, modelling the habitat preference of an endangered species 312 

that has undergone range contraction is particularly problematic, i.e. absence from an area 313 

might not mean that the area is unsuitable, simply that the species has been extirpated from 314 

that area (Guisan & Thuiller, 2005). Therefore, as the estimation of environmental suitability 315 

is fundamental when defining conservation measures for an endangered species, predictions 316 

need to be carefully validated in order to provide increased confidence in their accuracy. 317 
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Here we demonstrate that by using estimated individual tracks, it is possible to observe 318 

habitat use of a single animal directly and verify if it preferentially moves within areas of 319 

high predicted RHU. Combining direct observation of habitat use from individual tracking 320 

data to validate predicted environmental suitability is particularly important when static 321 

distribution data are used to describe habitat utilisation of mobile species. An additional 322 

advantage of comparing model outputs from independent sets of data lies in increasing the 323 

confidence of predictions made from a small sample size. Individual tracking observations 324 

would be too few (only six individuals in this study) to make robust inference regarding 325 

population-level habitat use, but the combination of distributions model outputs with 326 

geolocation model outputs can be used to infer the potential drivers of the distribution of the 327 

flapper skate. Therefore combining independent datasets also increases the power of 328 

individual tracking and survey data which, taken separately, would be too sparse to be used in 329 

a management framework, specifically when dealing with an endangered species only 330 

occupying a severely contracted distribution. 331 

There are other validation methods when field validation is not an available option. The most 332 

common practice is to split the data into a trial data set on which the model will be run, and 333 

the remainder to be used as a validation data set to see if model predictions correspond with 334 

these observations locations (Drexler & Ainsworth, 2013). The comparison between the 335 

predicted and observed values at the same location can be bootstrapped in order to create 336 

additional datasets and increase power and then fit correlation parameters to test for 337 

correspondence between the predicted and the observed value (Grüss et al., 2014). These 338 

methods are an important development, specifically when data are available on a single area 339 

or a single population. However, despite these statistical advances, cross-validation has been 340 

found to be stronger than “split sample” methods already within a single dataset, specifically 341 

when the sample size is small (Drummond et al., 2003; Maggini et al., 2006). When different 342 
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sets of data are available, between data sets cross-validation should be used, taking advantage 343 

of the independency of data sets which reduces bias and increases statistical power. 344 

Understanding the environmental preferences of the flapper skate, an endangered species in 345 

urgent need of conservation, is a fundamental step towards its management. The spatial 346 

dynamics of a species are important in the context of conservation planning as they not only 347 

highlight areas of use but also their connectivity (Baguette et al., 2013). A significant portion 348 

of the study area was recently designated a marine protected area for flapper skate 349 

(www.scotland.gov.uk/Topics/marine/marine-environment/mpanetwork). Although this study 350 

suggests that the flapper skate is a species which concentrates close to the coast, its presence 351 

is also predicted to be high around offshore islands. Therefore, the environmental preference 352 

of the flapper skate seems to be defined by areas which are close to the coastline with deep 353 

areas in close proximity. The preference of areas defined by the combination of deep areas 354 

and limited by the distance from the coast is in agreement with findings from previous studies 355 

(Neat et al., 2015; Pinto & Spezia, 2015) showing that this species has a wide daily range of 356 

depths (from 20m to over 200m) potentially due to the following of its benthic preys daily 357 

migrations. The geolocation results suggest that individuals have a high probability to move 358 

out of the protected area. The protected area is currently only protecting individuals resident 359 

in the inner lochs, and these individuals (as 7967, 7968 and 7972) were observed to 360 

consistently use areas south of the protected area (towards the North Channel) (Fig.2 and 361 

Fig.4). This study therefore suggests further areas where additional protection might be 362 

beneficial and where more information needs to be collected. Connectivity between the inner 363 

lochs and offshore areas (Stanton Banks) (Fig.2 and Fig.4) should also be explored to 364 

investigate if these populations are connected or isolated, as this may influence conservation 365 

measures. 366 

http://www.scotland.gov.uk/Topics/marine/marine-environment/mpanetwork
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Layers of species’ environmental preferences produced by suitability models are not the final 367 

step of spatial conservation modelling, but are a fundamental step towards it. An emerging 368 

approach is the application of spatially-realistic, individual-based simulation models, such as 369 

RangeShifter (Bocedi et al., 2014) and HexSim (Schumaker, 2013). These modelling 370 

platforms are already being used to address a range of conservation questions, related to 371 

improving landscape connectivity (Synes et al., 2015), reintroduction or assisted colonisation 372 

programmes (Huber et al., 2014) as well as for understanding and informing the management 373 

of spread of invasive species (Fraser et al., 2015). In all of these examples, the definition of 374 

landscape suitability is a vital step, and there is typically considerable uncertainty in model 375 

outputs when, as is often the case, the uncertainty in environmental preference is large. 376 

Notably, one recent study using RangeShifter highlighted that uncertainty in the 377 

environmental layer can be responsible for greater uncertainty in the outputs than that due to 378 

the uncertainty surrounding demographic estimates (Heikkinen et al., 2014). Thus the 379 

approach proposed here, using a combination of data sources to improve representations of 380 

environmental suitability, offers substantial promise for increasing the reliability of model 381 

outputs used to inform conservation management.  382 

 (A) CONCLUSIONS 383 

We showed how integrating independent sets of data and different modelling procedures can 384 

help validate model predictions reducing the uncertainty surrounding such estimates. This 385 

approach combined static observations with individual tracking data, taking advantage of the 386 

strengths of both information sources: the higher sample sizes of distribution data and the real 387 

time habitat use from individual tracks. The integration process can help in the definition of 388 

effective conservation measures for endangered species and to assess the efficacy of those 389 

already existing. Considering the increasing volumes of data collected at the individual level 390 

(Block et al., 2011), the development of methods to integrate independent sources of data is 391 
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of high value in the marine environment. Visual comparison of outputs can be useful for 392 

communicating findings to stakeholders when defining ecosystem based management 393 

frameworks, after it has been formally backed-up with quantitative evidence. Finally model 394 

validation improved the confidence in using data with relatively low power to inform 395 

conservation management and to direct future data collection to improve on-going adaptive 396 

conservation planning.  397 

(A) ACKNOWLEDGEMENTS 398 

The authors would like to thank the College of Life Sciences of Aberdeen University and 399 

Marine Scotland Science which funded CP’s PhD project. Skate tagging experiments were 400 

undertaken as part of Scottish Government project SP004. We thank Ian Burrett for help in 401 

catching the fish and the other fishermen and anglers who returned tags. We thank José 402 

Manuel Gonzalez-Irusta for extracting and making available the environmental layers used as 403 

environmental covariates in the environmental suitability modelling procedure. We also 404 

thank Jason Matthiopoulos for insightful suggestions on habitat utilisation metrics as well as 405 

Stephen C.F. Palmer, and three anonymous reviewers for useful suggestions to improve the 406 

clarity and quality of the manuscript. 407 

 408 

(A) REFERENCES 409 

Aarts G., MacKenzie M., McConnell B., Fedak M., & Matthiopoulos J. (2008) Estimating 410 

space-use and habitat preference from wildlife telemetry data. Ecography, 31, 140–160.  411 

Aarts G., Fieberg J. & Matthiopoulos J. (2012) Comparative interpretation of count, 412 

presence-absence and point methods for species distribution models. Methods in Ecology and 413 

Evolution, 3, 177-187. 414 



18 
 

Aertsen W., Kint V., van Orshoven J., Özkan K., & Muys B. (2010) Comparison and ranking 415 

of different modelling techniques for prediction of site index in Mediterranean mountain 416 

forests. Ecological Modelling, 221, 1119–1130.  417 

Austin M. (2002) Spatial prediction of species distribution: an interface between ecological 418 

theory and statistical modelling. Ecological Modelling, 157, 101–118.  419 

Baguette M., Blanchet S., Legrand D., Stevens V.M. & Turlure C. (2013) Individual 420 

dispersal, landscape connectivity and ecological networks. Biological Reviews, 88, 310–326.  421 

Barry S. & Elith J. (2006) Error and uncertainty in habitat models. Journal of Applied 422 

Ecology, 43, 413–423.  423 

Block B.A., Jonsen I.D., Jorgensen S.J., Winship A.J., Shaffer S.A., Bograd S.J., Hazen E.L., 424 

Foley D.G., Breed G.A., Harrison A.L., & Ganong J.E. (2011) Tracking apex predator 425 

movements in a dynamic ocean. Nature, 475, 86-90. 426 

Bocedi G., Palmer S.C.F., Pe’er G., Heikkinen R.K., Matsinos Y.G., Watts K., & Travis 427 

J.M.J. (2014) RangeShifter: A platform for modelling spatial eco-evolutionary dynamics and 428 

species’ responses to environmental changes. Methods in Ecology and Evolution, 5, 388–396.  429 

Brander K. (1980) Fisheries management and conservation in the Irish Sea. Helgoländer 430 

Meeresuntersuchungen, 33, 687–699.  431 

Brander K. (1981) Disappearance of common skate Raja batis from Irish Sea. Nature, 290, 432 

48–49.  433 

Du Buit M.H. (1977) Age et croissance de Raja batis et de Raja naevus en Mer Celtique. J. 434 

Cons. int. Explor. Mer., 37, 261–265.  435 



19 
 

Correia A.M., Tepsich P., Rosso M., Caldeira R., & Sousa-Pinto I. (2015) Cetacean 436 

occurrence and spatial distribution: Habitat modelling for offshore waters in the Portuguese 437 

EEZ (NE Atlantic). Journal of Marine Systems, 143, 73–85.  438 

Daan N., Heessen H., & Hofstede R. (2005) North Sea Elasmobranchs : distribution , 439 

abundance and biodiversity. CM-International Council for the Exploration of the Sea, CM 06 440 

1–15.  441 

Drexler M. & Ainsworth C.H. (2013) Generalized additive models used to predict species 442 

abundance in the Gulf of Mexico: an ecosystem modeling tool. PLoS ONE, 8, e64458.  443 

Drummond S.T., Sudduth K. a, Joshi a, Birrell S.J., & Kitchen N.R. (2003) Statistical and 444 

neural methods for site-specific yield prediction. Transactions of the ASAE, 46, 1–10.  445 

Elith J. & Leathwick J.R. (2009) Species distribution models: ecological explanation and 446 

prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 447 

677–697.  448 

Elith, J., Kearney M. & Phillips S. (2010) The art of modelling range‐shifting species. 449 

Methods in Ecology and Evolution, 1, 330-342. 450 

Fraser E.J., Lambin X., Travis J.M.J., Harrington L.A., Palmer S.C.F., Bocedi G. & 451 

MacDonald D.W. (2015) Range expansion of an invasive species through a heterogeneous 452 

landscape - the case of American mink in Scotland. Diversity and Distribution, 21, 888-900. 453 

Freeman, E. A. & Moisen, G. (2008) PresenceAbsence: An R Package for Presence-Absence 454 

Model Analysis. Journal of Statistical Software,  23,1-31.  455 

Griffiths A.M., Sims D.W., Cotterell S.P., El Nagar A., Ellis J.R., Lynghammar A., McHugh 456 

M., Neat F.C., Pade N.G., Queiroz N., Serra-Pereira B., Rapp T., Wearmouth V.J., & Genner 457 

M.J. (2010) Molecular markers reveal spatially segregated cryptic species in a critically 458 



20 
 

endangered fish, the common skate (Dipturus batis). Proceedings of the Royal Society of 459 

London B: Biological Sciences, 277, 1497–503.  460 

Grubbs R.D. & Musick J.A. (2007) Spatial delineation of summer nursery areas for juvenile 461 

sandbar sharks in Cheasepeak Bay, Virginia. American Fisheries Society Symposium, 50, 63-462 

86. 463 

Grüss A., Drexler M., & Ainsworth C.H. (2014) Using delta generalized additive models to 464 

produce distribution maps for spatially explicit ecosystem models. Fisheries Research, 159, 465 

11–24.  466 

Guisan A., Edwards T.C., & Hastie T. (2002) Generalized linear and generalized additive 467 

models in studies of species distributions : setting the scene. Ecological Modelling, 157, 89–468 

100.  469 

Guisan A. & Thuiller W. (2005) Predicting species distribution: offering more than simple 470 

habitat models. Ecology Letters, 8, 993–1009.  471 

Guisan A. & Zimmermann N.E. (2000) Predictive habitat distribution models in ecology. 472 

Ecological Modelling, 135, 147–186.  473 

Heikkinen R.K., Bocedi G., Kuussaari M., Heliola J., Leikola N., Poyry J. & Travis J.M.J. 474 

(2014) Impacts of land cover data selection and trait parameterisation on dynamic modelling 475 

of species' range expansion. PLoS ONE 9: e108436.  476 

Huber P.R., Greco S.E., Schumaker N.H. & Hobbs J. (2014) A priori assessment of 477 

reintroduction strategies for a native ungulate: using HexSim to guide release site selection. 478 

Landscape Ecology, 29, 689-701. 479 

Hunter E., Aldridge J.N., Metcalfe J.D. & Arnold G.P. (2003) Geolocation of free ranging 480 

fish on the European continental shelf as determined from environmental variables. Marine 481 

Biology, 142, 601-609. 482 



21 
 

Iglésias S.P., Toulhoat L. & Sellos D.Y. (2010) Taxonomic confusion and market 483 

mislabelling of threatened skates: important consequences for their conservation status. 484 

Aquatic Conservation: Marine and Freshwater Ecosystems, 20, 319–333.  485 

Jetz W., McPherson J.M. & Guralnick R.P. (2012) Integrating biodiversity distribution 486 

knowledge: Towards a global map of life. Trends in Ecology and Evolution, 27, 151–159.  487 

Jorgensen S. J., Reeb C.A., Chapple T. K., Anderson S., Perle C., Van Sommeran S. R., 488 

Fritz-Cope C., Brown A.C., Klimley A. P.& Block B. A. (2009) Philopatry and migration of 489 

Pacific white sharks. Proceedings of the Royal Society of London B: Biological Sciences: 490 

rspb20091155 491 

Maggini R., Lehmann A., Zimmermann N.E., & Guisan A. (2006) Improving generalized 492 

regression analysis for the spatial prediction of forest communities. Journal of Biogeography, 493 

33, 1729–1749.  494 

Moisen G.G. & Frescino T.S. (2002) Comparing five modelling techniques for predicting  495 

forest characteristics. Ecological Modelling, 157, 209–225.  496 

Neat F., Pinto C., Burrett I., Cowie L., Travis J., Thorburn J., Gibb F., & Wright P.J. (2015) 497 

Site fidelity, survival and conservation options for the threatened flapper skate (Dipturus cf. 498 

intermedia). Aquatic Conservation: Marine and Freshwater Ecosystems, 25, 6-20.  499 

Neuenfeldt S., Righton D., Neat F., Wright P.J., Svedäng H., Michalsen K., Subbey S., 500 

Steingrund P., Thorsteinsson V., Pampoulie C., Andersen K.H., Pedersen M.W., & Metcalfe 501 

J. (2013) Analysing migrations of Atlantic cod Gadus morhua in the North-East Atlantic 502 

Ocean: then, now and the future. Journal of Fish Biology, 82, 741–763.  503 

Oppel S., Meirinho A., Ramírez I., Gardner B., O’Connell A.F., Miller P.I., & Louzao M. 504 

(2012) Comparison of five modelling techniques to predict the spatial distribution and 505 

abundance of seabirds. Biological Conservation, 156, 94–104.  506 



22 
 

Pedersen M.W., Righton D., Thygesen U.H., Andersen K.H., & Madsen H. (2008) 507 

Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and behavioural 508 

switching. Canadian Journal of Fisheries and Aquatic Sciences, 65, 2367–2377.  509 

Petit C.C. & Lambin E.F. (2002) Impact of data integration technique on historical land-use / 510 

landcover change : comparing historical maps with remote sensing data in the Belgian 511 

Ardennes. Landscape Ecology, 17, 117-132.  512 

Phillips S.J., Anderson R.P. & Schapire R.E. (2006) Maximum entropy of modeling of 513 

species geographic distributions. Ecological modelling, 190, 231-259. 514 

Philippart C.J. (1998) Long-term impact of bottom fisheries on several by-catch species of 515 

demersal fish and benthic invertebrates in the south-eastern North Sea. ICES Journal of 516 

Marine Science:Journal du Conseil, 55, 342-352. 517 

Pinto C., & Spezia L. (2015) Markov switching autoregressive models for interpreting 518 

vertical movement data with application to an endangered marine apex predator. Methods in 519 

Ecology and Evolution. DOI: 10.1111/2041-210X.12494. 520 

Porzig E.L., Seavy N.E., Gardali T., Geupel G.R., Holyoak M., & Eadie J.M. (2014) Habitat 521 

suitability through time: using time series and habitat models to understand changes in bird 522 

density. Ecopshere, 5, 1–16.  523 

Pulliam H.R. (2000) On the relationship between niche and distribution. Ecology Letters, 3, 524 

349–361.  525 

R Core Team (2014) R: A language and environment for statistical computing. R Foundation 526 

for Statistical Computing, Vienna, Austria. http://www.R-project.org/ 527 

Raes, N. & H. ter Steege (2007) A null-model for significance testing of presence-only 528 

species distribution models. Ecography, 30, 727-736. 529 



23 
 

Rogers L., Olsen E., Knutsen H., & Stenseth N. (2014) Habitat effects on population 530 

connectivity in a coastal seascape. Marine Ecology Progress Series, 511, 153–163.  531 

Ropert-Coudert Y., Beaulieu M., Hanuise N., & Kato A. (2009) Diving into the world of 532 

biologging. Endangered Species Research, 10, 21–27.  533 

Schumaker, N.H. (2013) HexSim (Version 2.4). U.S. Environmental Protection Agency, 534 

Environmental Research Laboratory, Corvallis, Oregon, USA. www.hexsim.net 535 

Shearer K. A, Hayes J.W., Jowett I.G., & Olsen D. A (2015) Habitat suitability curves for 536 

benthic macroinvertebrates from a small New Zealand river. New Zealand Journal of Marine 537 

and Freshwater Research, 37–41.  538 

Synes N.W., Watts K., Palmer S.C.F., Bocedi G., Bartoń K.A., Osborne P.E. & Travis J.M.J. 539 

(2015). A multi-species modelling approach to examine the impact of alternative climate 540 

change adaptation strategies on range shifting ability in a fragmented landscape. Ecological 541 

Informatics, 30, 222-229. 542 

Venables W.N. & Dichmont C.M. (2004) GLMs, GAMs and GLMMs: an overview of theory 543 

for applications in fisheries research. Fisheries Research, 70, 319–337.  544 

Walker P.A. & Hislop J.R.G. (1998) Sensitive skates or resilient rays? Spatial and temporal 545 

shifts in ray species composition in the central and north western North Sea between 1930 546 

and the present day. ICES Journal of Marine Science, 55, 392–402.  547 

Werry J.M., Planes S., Berumen M.L., Lee K.A., Braun C.D., & Clua E. (2014) Reef-fidelity 548 

and migration of tiger sharks, Galeocerdo cuvier, across the coral sea. PLoS ONE, 9, e83249.  549 

Whitlock R.E., McAllister M.K. & Block B.A. (2012) Estimating fishing and natural 550 

mortality rates for Pacific bluefin tuna (Thunnus orientalis) using electronic tagging data. 551 

Fisheries Research, 119-120, 115–127.  552 



24 
 

Wood S.N. (2006) Generalized additive models: an introduction with R. CRC press. 553 

Wood S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood 554 

estimation of semiparametric generalized linear models. Journal of the Royal Statistical 555 

Society (B), 73, 3-36. 556 

 557 

SUPPORTING INFORMATION 558 

Additional Supporting Information may be found in the online version of this article:  559 

Appendix S1 {Details on the individual tracks and preparation for the analysis.}  560 

Appendix S2 {Figures showing the areas were the tracks were randomly generated to test for 561 

consistency with results from the observed tracks}  562 

Appendix S3 {Details on the GAM modelling and its parameters with tables and figures 563 

reporting additional results on variables’ colinearity, mixed models selection and model 564 

accuracy.} 565 

Appendix S4 {Individual depth profiles showing time steps when individuals were recorded 566 

also by acoustic stations} 567 

As a service to our authors and readers, this journal provides supporting information supplied 568 

by the authors.  Such materials are peer-reviewed and may be re-organized for online 569 

delivery, but are not copy-edited or typeset. Technical support issues arising from supporting 570 

information (other than missing files) should be addressed to the authors. 571 

BIOSKETCH 572 



25 
 

Cecilia Pinto  is interested in applying scientific research to conservation practices, in 573 

particular developing methods to assess the state of data poor species in need for 574 

conservation. This study was an aspect of her PhD which researched the potential of 575 

integrating multiple data sources in an individual based dynamic model to define 576 

conservation measures for the endangered species Dipturus cf. intermedia. The remaining 577 

authors have diverse interests in ecology and conservation and apply a combination of 578 

practical and theoretical approached to conservation and species management. 579 

Author contributions: C.P., J.A.T. and F.N. collected the data. C.P. carried on the spatial 580 

distribution model analysis, interpreted the results and led the writing of the manuscript. 581 

J.A.T. carried on the geolocation analysis. S.W. developed the modified geolocation model. 582 

T.C. supervised the analysis and corrected and made suggestions to the text. J.M.J.T., F.N., 583 

P.W. and B.S. corrected and made suggestions to the text. 584 

  585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 

 597 



26 
 

TABLES 598 

Table 1_model selection was based on AIC. Log-likelihood values show model significance. 599 

 AIC Log-lik 

g(η) ~ s(latitude, longitude) + s(√depth) + s(distance from the 

coast) + factor(gear) 
378.2613 -177.4526 

g(η) ~ s(latitude, longitude) + s(√depth) + factor(gear) 383.2979 -179.5784 

g(η) ~ s(√depth) + s(distance from the coast) + factor(gear) 377.6462 -179.6911 
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FIGURES 618 

619 
Figure 1 Locations of all bottom trawl surveys around Scotland (UK) from which presence-620 

absence records of flapper skate were extracted. 621 

 622 
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623 
Figure 2 Probability of presence of flapper skate around Scotland as predicted from the 624 

GAM. As no records from the east coast of Scotland were available, predictions in that area 625 

should not be considered reliable. 626 
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 627 

Figure 3 Predicted probability of presence of flapper skate from a GAM in relation to 628 

distance from the coast and depth. Dotted lines indicate 95% confidence intervals. 629 

 630 
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 633 

 634 

 635 

 636 

 637 

 638 
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 639 

Figure 4 Utilization distribution map (UDM) estimated by the geolocation model for each 640 

tagged flapper skate off the west coast of Scotland. Each cell of a track has a different 641 

probability value as the UDM is an average of all possible tracks predicted by the model. 642 

This directly accounts for the model error in the UDM.   643 
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644 
Figure 5 Estimated tracks of each individual (black circles) plotted over the relative habitat 645 

utilization predicted from the GAM (see legend for values). Differently from Figure 4 here 646 

the tracks’ cells are plotted without representing the different probability values. The grey 647 

areas correspond to land. 648 
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649 
Figure 6 Distribution of the relative habitat utilisation predicted in the area covered by the 650 

geolocated track plus a 2’ buffer (grey boxplot) against the distribution of relative habitat 651 

utilisation predicted at the track exact locations (white boxplot) for each tagged flapper skate. 652 

Values of relative habitat utilisation at exact tracks’ locations are always higher. 653 
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654 
Figure 7 The dashed vertical line represents the RHU-likelihood at the six observed tracks 655 

locations combined. The histogram represents the distribution of RHU-likelihoods at 10,000 656 

randomised tracks. 657 


