15 research outputs found

    Implementation of digital detection scheme for fiber optic gyroscope

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent Univ., 2013.Thesis (Master's) -- Bilkent University, 2013.Includes bibliographical references leaves 64-67.Fiber optic gyroscope (FOG) is a kind of inertial sensor that can be used for navigation, control and guidance of air, naval, land and space vehicles. A FOG measures rotation rate dependent on phase difference between two counterpropagating light waves through a rotating fiber loop. In this thesis, the main principles of FOG such as Sagnac effect and reciprocity are described. The optical scheme consists of a broadband light source, a coupler, a polarizer, an integrated optic chip and a fiber coil, is developed and established. The modulation and demodulation techniques used in FOG are also investigated in detail. The digital detection system is built with a photodetector, a transimpedance amplifier, a voltage amplifier and a data acquisition (DAQ) system. A transceiver module and an FPGA processor are the components of DAQ system. The modulation and demodulation processes are implemented by using LabVIEW FPGA module. The program created in LabVIEW environment allows to characterize scale factor and phase modulator parameters. Rotation rate measurements are performed and analyzed by Allan variance method. The impacts of different noise types to the performance of FOG are analyzed. Angle random walk (ARW), noise component to determine short-term accuracy of FOG, is reduced by integration of spike-free signal. We also show that we obtain similar noise parameters even if the output power of the system is very low. It is proven and tested that ARW is reduced by the optimization of modulation depth. Theoretical and experimental results are quite consistent at every stages of the work.Öğüt, SerdarM.S

    Adsorption and Diffusion of Pt and Au on the Stoichiometric and Reduced TiO2 Rutile (110) Surfaces

    Full text link
    A comparative first principles pseudopotential study of the adsorption and migration profiles of single Pt and Au atoms on the stoichiometric and reduced TiO2 rutile (110) surfaces is presented. Pt and Au behave similarly with respect to (i) most favorable adsorption sites, which are found to be the hollow and substitutional sites on the stoichiometric and reduced surfaces, respectively, (ii) the large increase in their binding energy (by ~1.7 eV) when the surface is reduced, and (iii) their low migration barrier near 0.15 eV on the stoichiometric surface. Pt, on the other hand, binds more strongly (by ~2 eV) to both surfaces. On the stoichiometric surface, Pt migration pattern is expected to be one-dimensional, which is primarily influenced by interactions with O atoms. Au migration is expected to be two-dimensional, with Au-Ti interactions playing a more important role. On the reduced surface, the migration barrier for Pt diffusion is significantly larger compared to Au.Comment: 3 figures, 1 table, submitted to PR

    The Electronic and Superconducting Properties of Oxygen-Ordered MgB2 compounds of the form Mg2B3Ox

    Full text link
    Possible candidates for the Mg2B3Ox nanostructures observed in bulk of polycrystalline MgB2 (Ref.1) have been studied using a combination of Z-contrast imaging, electron energy loss spectroscopy (EELS) and first-principles calculations. The electronic structures, phonon modes, and electron phonon coupling parameters are calculated for two oxygen-ordered MgB2 compounds of composition Mg2B3O and Mg2B3O2, and compared with those of MgB2. We find that the density of states for both Mg2B3Ox structures show very good agreement with EELS, indicating that they are excellent candidates to explain the observed coherent oxygen precipitates. Incorporation of oxygen reduces the transition temperature and gives calculated TC values of 18.3 K and 1.6 K for Mg2B3O and Mg2B3O2, respectively.Comment: Submitted to PR

    Density-relaxation part of the self energy

    Get PDF
    A comment is made on the large-cluster limit of the self-energy correction for the quasiparticle energy gap in silicon clusters presented by Serdar Ogut, James R. Chelikowsky and Steven G. Louie in Phys. Rev. Lett. 79, 1770 (1997)

    Ab Initio Structural Energetics of Beta-Si3N4 Surfaces

    Full text link
    Motivated by recent electron microscopy studies on the Si3N4/rare-earth oxide interfaces, the atomic and electronic structures of bare beta-Si3N4 surfaces are investigated from first principles. The equilibrium shape of a Si3N4 crystal is found to have a hexagonal cross section and a faceted dome-like base in agreement with experimental observations. The large atomic relaxations on the prismatic planes are driven by the tendency of Si to saturate its dangling bonds, which gives rise to resonant-bond configurations or planar sp^2-type bonding. We predict three bare surfaces with lower energies than the open-ring (10-10) surface observed at the interface, which indicate that non-stoichiometry and the presence of the rare-earth oxide play crucial roles in determining the termination of the Si3N4 matrix grains.Comment: 4 Pages, 4 Figures, 1 tabl

    On the theory of conventional and high Tc superconductivity

    No full text

    Practical GW

    No full text

    Correction to Benchmarking the GW

    No full text
    corecore