1,697 research outputs found

    Dietary Modulation of Oxidative Stress From Edible Insects: A Mini-Review

    Get PDF
    Edible insects are proposed as a nutritious and environmentally sustainable alternative source to animal proteins, due to their numerous advantages in terms of reduced ecological impact and high nutritional value. However, the novelty for edible insects relies on the content of bioactive ingredients potentially able to induce a functional effect in the body. The present review summarizes the main findings on the antioxidant properties of edible insects available in the literature. A total of 30 studies involving animals, cell cultures, or in vitro experimental studies evaluating the antioxidant effect of edible insects are presented in this work. When the antioxidant activity was investigated, using a wide variety of in vitro tests and in cellular models, positive results were shown. Dietary supplementation with edible insects was also able to counteract dietary oxidative stress in animal models, restoring the balance of antioxidant enzymes and reducing the formation of oxidation damage markers. On the basis of the reviewed evidences, edible insects might represent a source of novel redox ingredients at low ecological impact able to modulate oxidative stress. However, due to the fact that majority of these evidences have been obtained in vitro and in cellular and animal models, dietary intervention trials are needed to assess the efficacy of edible insect consumption to modulate redox status in humans

    Ultrahigh brightness electron beams by plasma-based injectors for driving all-optical free-electron lasers

    Get PDF
    We studied the generation of low emittance high current monoenergetic beams from plasma waves driven by ultrashort laser pulses, in view of achieving beam brightness of interest for free-electron laser (FEL) applications. The aim is to show the feasibility of generating nC charged beams carrying peak currents much higher than those attainable with photoinjectors, together with comparable emittances and energy spread, compatibly with typical FEL requirements. We identified two regimes: the first is based on a laser wakefield acceleration plasma driving scheme on a gas jet modulated in areas of different densities with sharp density gradients. The second regime is the so-called bubble regime, leaving a full electron-free zone behind the driving laser pulse: with this technique peak currents in excess of 100 kA are achievable. We have focused on the first regime, because it seems more promising in terms of beam emittance. Simulations carried out using VORPAL show, in fact, that in the first regime, using a properly density modulated gas jet, it is possible to generate beams at energies of about 30 MeV with peak currents of 20 kA, slice transverse emittances as low as 0.3 mm mrad, and energy spread around 0.4%. These beams break the barrier of 10^{18}  A/(mm mrad)^{2} in brightness, a value definitely above the ultimate performances of photoinjectors, therefore opening a new range of opportunities for FEL applications. A few examples of FELs driven by such kind of beams injected into laser undulators are finally shown. The system constituted by the electron beam under the effect of the electromagnetic undulator has been named AOFEL (for all optical free-electron laser)

    Sub-picosecond compression by velocity bunching in a photo-injector

    Get PDF
    We present an experimental evidence of a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. The bunch length issued from a laser-driven radio-frequency electron source was compressed by a factor >3 using an S-band traveling wave structure located immediately downstream from the electron source. Experimental data are found to be in good agreement with particle tracking simulations.Comment: 19 pages, 9 figures, submitted to Phys. Rev. Spec. Topics A&

    Electron beam transfer line design for plasma driven Free Electron Lasers

    Full text link
    Plasma driven particle accelerators represent the future of compact accelerating machines and Free Electron Lasers are going to benefit from these new technologies. One of the main issue of this new approach to FEL machines is the design of the transfer line needed to match of the electron-beam with the magnetic undulators. Despite the reduction of the chromaticity of plasma beams is one of the main goals, the target of this line is to be effective even in cases of beams with a considerable value of chromaticity. The method here explained is based on the code GIOTTO [1] that works using a homemade genetic algorithm and that is capable of finding optimal matching line layouts directly using a full 3D tracking code.Comment: 9 Pages, 4 Figures. A related poster was presented at EAAC 201

    High-power multi-emitter modules with fiber Bragg grating stabilization

    Get PDF
    The paper reports on the wavelength stabilization of high-power laser diode multi-emitter modules using as the external reflectors fiber Bragg gratings that are directly inscribed into the large mode area module delivery fiber using a femtosecond laser. Experiments have been carried out in a 200 ÎĽm fiber at 976 nm, but the approach can be extended at other fiber diameters and wavelengths. The results have demonstrated an effective stabilization over a broad driving current range, with power penalties in line or slightly lower than those of more traditional architectures that make use of discrete components, such as volume Bragg gratings, but with the advantage of not requiring the alignment of additional elements
    • …
    corecore