8 research outputs found

    Matriptase activation of gq drives epithelial disruption and inflammation via RSK and DUOX

    Get PDF
    Epithelial tissues are primed to respond to insults by activating epithelial cell motility and rapid inflammation. Such responses are also elicited upon overexpression of the membrane-bound protease, Matriptase, or mutation of its inhibitor, Hai1. Unrestricted Matriptase activity also predisposes to carcinoma. How Matriptase leads to these cellular outcomes is unknown. We demonstrate that zebrafish hai1a mutants show increased H2O2, NfκB signalling, and IP3R -mediated calcium flashes, and that these promote inflammation, but do not generate epithelial cell motility. In contrast, inhibition of the Gq subunit in hai1a mutants rescues both the inflammation and epithelial phenotypes, with the latter recapitulated by the DAG analogue, PMA. We demonstrate that hai1a has elevated MAPK pathway activity, inhibition of which rescues the epidermal defects. Finally, we identify RSK kinases as MAPK targets disrupting adherens junctions in hai1a mutants. Our work maps novel signalling cascades mediating the potent effects of Matriptase on epithelia, with implications for tissue damage response and carcinoma progression

    Pulsed SILAM Reveals In Vivo Dynamics of Murine Brain Protein Translation

    No full text
    10.1021/acsomega.9b04439ACS OMEGA52313528-1354

    The kinase TNIK is an essential activator of Wnt target genes

    No full text
    Wnt signalling maintains the undifferentiated state of intestinal crypt/progenitor cells through the TCF4/β-catenin-activating transcriptional complex. In colorectal cancer, activating mutations in Wnt pathway components lead to inappropriate activation of the TCF4/β-catenin transcriptional programme and tumourigenesis. The mechanisms by which TCF4/β-catenin activate key target genes are not well understood. Using a proteomics approach, we identified Tnik, a member of the germinal centre kinase family as a Tcf4 interactor in the proliferative crypts of mouse small intestine. Tnik is recruited to promoters of Wnt target genes in mouse crypts and in Ls174T colorectal cancer cells in a β-catenin-dependent manner. Depletion of TNIK and expression of TNIK kinase mutants abrogated TCF–LEF transcription, highlighting the essential function of the kinase activity in Wnt target gene activation. In vitro binding and kinase assays show that TNIK directly binds both TCF4 and β-catenin and phosphorylates TCF4. siRNA depletion of TNIK followed by expression array analysis showed that TNIK is an essential, specific activator of Wnt transcriptional programme. This kinase may present an attractive candidate for drug targeting in colorectal cancer

    Phosphatidylinositol 3-Kinase Signaling Does Not Activate the Wnt Cascade

    No full text
    Mutational activation of the phosphatidylinositol 3-kinase (PI3K) pathway occurs in a wide variety of tumors, whereas activating Wnt pathway mutants are predominantly found in colon cancer. Because GSK3 is a key component of both pathways, it is widely assumed that active PI3K signaling feeds positively into the Wnt pathway by protein kinase B (PKB)-mediatefd inhibition of GSK3. In addition, PKB has been proposed to modulate the canonical Wnt signaling through direct stabilization and nuclear localization of β-catenin. Here, we show that compartmentalization by Axin of GSK3 prohibits cross-talk between the PI3K and Wnt pathways and that Wnt-mediated transcriptional activity is not modulated by activation of the PI3K/PKB pathway

    Aging-induced isoDGR-modified fibronectin activates monocytic and endothelial cells to promote atherosclerosis

    No full text
    Background and aims: Aging is the primary risk factor for cardiovascular disease (CVD), but the mechanisms underlying age-linked atherosclerosis remain unclear. We previously observed that long-lived vascular matrix proteins can acquire 'gain-of-function' isoDGR motifs that might play a role in atherosclerotic pathology. Methods: IsoDGR-specific mAb were generated and used for ELISA-based measurement of motif levels in plasma samples from patients with coronary artery diseases (CAD) and non-CAD controls. Functional consequences of isoDGR accumulation in age-damaged fibronectin were determined by bioassay for capacity to activate monocytes, macrophages, and endothelial cells (signalling activity, pro-inflammatory cytokine expression, and recruitment/adhesion potential). Mice deficient in the isoDGR repair enzyme PCMT1 were used to assess motif distribution and macrophage localisation in vivo. Results: IsoDGR-modified fibronectin and fibrinogen levels in patient plasma were significantly enhanced in CAD and further associated with smoking status. Functional assays demonstrated that isoDGR-modified fibronectin activated both monocytes and macrophages via integrin receptor ‘outside in’ signalling, triggering an ERK:AP-1 cascade and expression of pro-inflammatory cytokines MCP-1 and TNFα to drive additional recruitment of circulating leukocytes. IsoDGR-modified fibronectin also induced endothelial cell expression of integrin β1 to further enhance cellular adhesion and matrix deposition. Analysis of murine aortic tissues confirmed accumulation of isoDGR-modified proteins co-localised with CD68+ macrophages in vivo. Conclusions: Age-damaged fibronectin features isoDGR motifs that increase binding to integrins on the surface of monocytes, macrophages, and endothelial cells. Subsequent activation of ‘outside-in’ signalling elicits a range of potent cytokines and chemokines that drive additional leukocyte recruitment to the developing atherosclerotic matrix.Ministry of Education (MOE)National Medical Research Council (NMRC)This work was in part supported by grants from the National Medical Research Council of Singapore (NMRC–OF–IRG-0003-2016) and Ministry of Education of Singapore (MOE2018-T1-001-078)
    corecore