116 research outputs found

    Review: Brown ticks of the world

    Get PDF
    Walker, J.B., Keirans, J.E. and Horak, I.G. 2000: The genus Rhipicephalus (Acari, Ixodidae). A Guide to the Brown Ticks of the World. Cambridge University Press, xii+643 pp. ISBN 0 521 48008 6. Price ÂŁ70 (US$105)

    Low emission engine technologies for future tier 3 legislations : options and case studies

    Get PDF
    Marine emission legislation such as the current IMO Tier II and upcoming IMO Tier III requirements within the revised Marpol Annex VI have been major drivers for performance development of marine engines during the latest years. These requirements have triggered a vast amount of research activity at the engine OEM’s in order to identify and develop the best possible technologies for fulfilling the requirements. A main objective of this research has been to identify the various options available for reducing engine SOx and NOx emissions and to clarify the main criteria engine manufacturers consider to determine the optimum technology. Another objective has been to investigate how ship-owners and operators within the various marine segments are impacted by the new emissions requirements and what key factors they need to consider when identifying the optimum engine technology. Case studies conclude that the optimum solution can vary depending on the vessel application, operating time inside ECAs, as well as prices for fuels and reduction agents. In new-building cases, gas operated engines without after-treatment systems show a strong value proposition as an alternative to liquid fuel engines that require after-treatment solutions - especially for short-haul shipping applications where tighter emission legislations are enforced to a larger extent. Overall, 2-stage turbo charging, LNG, and SCR technologies are concluded to be the most feasible technologies. Generally, lower operating costs can compensate higher capital expenditures meaning that the owner should carefully evaluate the total cost of ownership of the various alternatives, and not consider only the initial capital expenditure. The choice of best technology option depends on a variety of issues which can change over time - such as the operation profile and route of the vessel and commodity prices. Consequently the ship-owner should evaluate the alternative technologies for a wide range of possible scenarios to find a flexible solution that minimizes exposure to risks related to changing boundary conditions. With this research, the reasons why certain emission reduction technologies are preferred to others both from OEM’s and ship-owner’s point of view are quantified and the most feasible technologies for meeting the requirements are identified.fi=vertaisarvioitu|en=peerReviewed

    Environmental and economic evaluation of fuel choices for short sea shipping

    Get PDF
    The shipping industry is looking for strategies to comply with increasingly stringent emission regulations. Fuel has a significant impact on emissions, so a switch to alternative fuels needs to be evaluated. This study investigated the emission performances of liquefied natural gas (LNG) and liquefied biogas (LBG) in shipping and compared them to conventional marine diesel oil (MDO) combined with selective catalytic reduction (SCR). For assessing the complete global warming potential of these fuels, the life-cycle approach was used. In addition, the study evaluated the local environmental impacts of combustion of these fuels, which is of particular importance for short sea shipping operations near coastal marine environment and residential areas. All three options examined are in compliance with the most stringent emission control area (ECA) regulations currently in force or entering into force from 2021. In terms of local environmental impacts, the two gaseous fuels had clear advantages over the MDO + SCR combination. However, the use of LNG as marine fuel achieved no significant CO2-equivalent reduction, thus making little progress towards the International Maritime Organization’s (IMO’s) visions of decarbonizing shipping. Major life cycle GHG emission benefits were identified by replacing fossil fuels with LBG. The most significant challenge facing LBG today is fuel availability in volumes needed for shipping. Without taxation or subsidies, LBG may also find it difficult to compete with the prices of fossil fuels.©2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, http://creativecommons.org/licenses/by/4.0/.fi=vertaisarvioitu|en=peerReviewed

    Emission reduction by biogas use in short sea shipping

    Get PDF
    fi=vertaisarvioimaton|en=nonPeerReviewed

    Waste heat recovery : bottoming cycle alternatives

    Get PDF
    fi=vertaisarvioimaton|en=nonPeerReviewed

    Modelling Sustainable Industrial Symbiosis

    Get PDF
    Industrial symbiosis networks conventionally provide economic and environmental benefits to participating industries. However, most studies have failed to quantify waste management solutions and identify network connections in addition to methodological variation of assessments. This study provides a comprehensive model to conduct sustainable study of industrial symbiosis, which includes identification of network connections, life cycle assessment of materials, economic assessment, and environmental performance using standard guidelines from the literature. Additionally, a case study of industrial symbiosis network from Sodankylä region of Finland is implemented. Results projected an estimated life cycle cost of €115.20 million. The symbiotic environment would save €6.42 million in waste management cost to the business participants in addition to the projected environmental impact of 0.95 million tonne of CO2, 339.80 tonne of CH4, and 18.20 tonne of N2O. The potential of further cost saving with presented optimal assessment in the current architecture is forecast at €0.63 million every year.© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Real-time simulation of combined engine and electrical equipment model in Simulink RT

    Get PDF
    This chapter presents steps towards real-time simulation of a combined engine and electrical equipment model in Simulink Real-Time (RT). This is a continuation of earlier work of Digital-twinning the engine research platform in VEBIC [1]. In this research, the goal was to build a digital twin of the engine research platform in VEBIC. When moving towards a digital twin, one of the first essential steps was to have a real-time capable model of the research platform. Real-time simulation capability was necessary for running the model and its real-world counterpart in parallel. The parallel simulations are needed to establish the model ability to emulate the real operation in the engine laboratory.©2021 VTTfi=vertaisarvioimaton|en=nonPeerReviewed

    Health Effects of Exhaust Particles

    Get PDF
    fi=vertaisarvioimaton|en=nonPeerReviewed

    Calibration Method for the Determination of the FAME and HVO Contents in Fossil Diesel Blends Using NIR Spectroscopy

    Get PDF
    The European diesel fuel standard, EN590, allows a 7% (V/V) biodiesel (FAME) addition to automotive diesel fuel. The allowed addition of renewable diesel (HVO) to fossil diesel is not defined, as long as the properties of the fuel blend still meet the requirements of the standard. However, it is important to analyze the biofuels’ content in diesel fuel blends. In this article, a development procedure of a calibration method for quantification of the HVO and FAME contents in fossil diesel blends using near-infrared (NIR) spectroscopy is presented. The analytical range of quantification of biodiesel content is from 0 to 10% (V/V) and of renewable diesel content from 0 to 20% (V/V). The partial least squares (PLS) regression method for multivariable data analysis and construction of the calibration models were used to create the calibration method. The constructed PLS models obtained prediction results for all diesel fuel blends with root mean square error of prediction (RMSEP) values of 2.66% (V/V) for the HVO content quantification and 0.18% (V/V) for quantification of the FAME content. This article concludes that the calibration method is acceptable for laboratory applications in practice.© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).This study was implemented within the Hercules-2 project. This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 634135.fi=vertaisarvioitu|en=peerReviewed

    Effects of sulphur on the storage stability of the bio and fossil fuel blends

    Get PDF
    In this study, the aim was to find out if mixing two common fuels together could be beneficial for both the environment and storage stability of fuel. It is obvious, that adding biodiesel to fossil fuel will decrease its sulphur content and reduce its carbon monoxide and hydrocarbon, sulphur dioxide and soot emissions. But will the high sulphur content enhance the storage stability of the biodiesel? Four B20 samples were produced, consisting of 20 vol% biodiesel and 80 vol% fossil diesel. The samples were prepared from rapeseed methyl ester (RME), low sulphuric fossil diesel fuel and high sulphuric diesel solvent. The blends had different sulphur contents of 6, 76, 149 and 226 mg kg-1. For these B20 fuel samples, the parameters were compared that correlate with the storage stability of the fuel blends. The studied parameters were the oxidation stability (OSI, according to EN 15751:2015), acid number (AN, according to EN 14104:2003) and kinematic viscosity (KV, by Stabinger SVM 3000 rotational viscometer). The measurements were carried out straight after mixing the blends, and again after 4, 8 and 12 weeks. According to the results, the fuel containing less sulphur slightly lost its oxidation stability within three months. Instead, the oxidation stability of high sulphuric samples improved within the same time frame. As a conclusion, the study gave a reason to assume that – in spite of its known drawbacks – the sulphur may be favourable to fuel blends’ storage stability but the phenomenon and chemistry should be studied in more detail.fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore