641 research outputs found

    On the thermodynamics of first-order phase transition smeared by frozen disorder

    Full text link
    The simplified model of first-order transition in a media with frozen long-range transition-temperature disorder is considered. It exhibits the smearing of the transition due to appearance of the intermediate inhomogeneous phase with thermodynamics described by the ground state of the short-range random-field Ising model. Thus the model correctly reproduce the persistence of first-order transition only in dimensions d > 2, which is found in more realistic models. It also allows to estimate the behavior of thermodynamic parameters near the boundaries of the inhomogeneous phase.Comment: 4 page

    Magnetic nanocomposites at microwave frequencies

    Full text link
    Most conventional magnetic materials used in the electronic devices are ferrites, which are composed of micrometer-size grains. But ferrites have small saturation magnetization, therefore the performance at GHz frequencies is rather poor. That is why functionalized nanocomposites comprising magnetic nanoparticles (e.g. Fe, Co) with dimensions ranging from a few nm to 100 nm, and embedded in dielectric matrices (e.g. silicon oxide, aluminium oxide) have a significant potential for the electronics industry. When the size of the nanoparticles is smaller than the critical size for multidomain formation, these nanocomposites can be regarded as an ensemble of particles in single-domain states and the losses (due for example to eddy currents) are expected to be relatively small. Here we review the theory of magnetism in such materials, and we present a novel measurement method used for the characterization of the electromagnetic properties of composites with nanomagnetic insertions. We also present a few experimental results obtained on composites consisting of iron nanoparticles in a dielectric matrix.Comment: 20 pages, 10 figures, 5 table

    Preterm birth, neonatal therapies and the risk of childhood cancer

    Get PDF
    Our aim was to study the impact of preterm birth and neonatal therapies on the risk of childhood cancer using a nationwide, registry-based, case-control design. Combining population-based data from Finnish Medical Birth Registry (MBR) and Finnish Cancer Registry, we identified a total of 2029 patients diagnosed with cancer under the age of 20 years and 10 103 age- and sex-matched controls over the years 1996 to 2014. Information on the prenatal and perinatal conditions was obtained from the MBR. Gestational age was categorized into early (= 37 weeks). Cancer risk among the preterm compared to term neonates was evaluated using conditional logistic regression. We identified 141 cancers among the preterm (20.8% of 678) vs 1888 cancers in the term children (16.5% of 11 454). The risk of any cancer was increased for the preterm (odds ratio [OR] 1.28, 95% confidence interval [CI] 1.06-1.57), especially for the early preterm (OR 1.84, 95% CI 1.16-2.92). The risk of acute myeloid leukemia (AML; OR 2.33, 95% CI 1.25-4.37), retinoblastoma (OR 3.21, 95% CI 1.22-8.41) and germ cell tumors (OR 5.89, 95% CI 2.29-15.18) was increased among the preterm compared to term. Germ cell tumors were diagnosed at a significantly younger age among the preterm. Neonatal therapies, for example, mechanical ventilation, were associated with an increased risk of childhood cancer independent of gestational age. Preterm, especially early preterm birth, is associated with an increased risk of childhood cancer, especially germ cell tumors and AML. Respiratory distress requiring neonatal intervention also appears to be associated with an increased risk.Peer reviewe

    Retrospective evidence for a biological cost of vancomycin resistance determinants in the absence of glycopeptide selective pressures

    Get PDF
    To estimate the relative fitness differences between glycopeptide-resistant Enterococcus faecium (GREF) and glycopeptide-susceptible E. faecium (GSEF) from yearly surveillance data on the occurrence of GREF in Danish poultry farm environments. A population genetic model was adapted to retrospectively estimate the biological fitness cost of acquired resistance. Maximization of a likelihood function was used to predict the longitudinal persistence of acquired resistance. Our analysis suggests strong selection against GREF following the 1995 ban on the glycopeptide growth promoter avoparcin. However, parameterizing the model with two selection coefficients suggesting a reduced negative effect of the acquired resistance on bacterial fitness over time significantly improved the fit of the model. Our analyses suggest that the acquired glycopeptide resistance will persist for >25 years. Conclusions Acquired resistance determinants in commensal E. faecium populations in Danish farm environments are likely to persist for decades, even in the absence of glycopeptide use

    Peptic Fluorescent "Signal-On" and "Signal-Off" Sensors Utilized for the Detection Protein Post-Translational Modifications

    Get PDF
    Protein post-translational modifications (PTMs) are typically enzyme-catalyzed events generating functional diversification of proteome; thus, multiple PTM enzymes have been validated as potential drug targets. We have previously introduced energy-transfer-based signal-modulation method called quenching resonance energy transfer (QRET), and utilize it to monitor PTM addition or removal using the developed peptide-break technology. Now we have reinvented the QRET technology, and as a model, we introduced the tunable fluorescent "signal-on" and "signal-off" detection scheme in the peptide-break PTM detection. Taking the advantage of time-resolved fluorescence-based single-label detection technology, we were able to select the signal direction upon PTM addition or removal by simply introducing different soluble Eu3+-signal-modulating molecule. This enables the selection of positive signal change upon measurable event, without any additional labeling steps, changes in assay condition or Eu3+-reporter. The concept functionality was demonstrated with four Eu3+-signal modulators in a high-throughput compatible kinase and phosphatase assays using signal-on and signal-off readout at 615 nm or time-resolved Forster resonance energy transfer at 665 nm. Our data suggest that the introduced signal modulation methodology provides a transitional fluorescence-based single-label detection concept not limited only to PTM detection

    Quasi-static cracks and minimal energy surfaces

    Get PDF
    We compare the roughness of minimal energy(ME) surfaces and scalar ``quasi-static'' fracture surfaces(SQF). Two dimensional ME and SQF surfaces have the same roughness scaling, w sim L^zeta (L is system size) with zeta = 2/3. The 3-d ME and SQF results at strong disorder are consistent with the random-bond Ising exponent zeta (d >= 3) approx 0.21(5-d) (d is bulk dimension). However 3-d SQF surfaces are rougher than ME ones due to a larger prefactor. ME surfaces undergo a ``weakly rough'' to ``algebraically rough'' transition in 3-d, suggesting a similar behavior in fracture.Comment: 7 pages, aps.sty-latex, 7 figure

    A fundamental rule: determining the importance of flow prior to polymer crystallization

    Get PDF
    A continuum-level model for non-isothermal polymer crystallization following a complex flow is presented, along with a fundamental rule that may be employed to determine if the flow will influence the ensuing crystallization dynamics. This rule is based on two dimensionless parameters: the (Rouse) Weissenberg number, and an inverse Deborah number de�ned by the ratio between the time taken to cool to the melting point versus the stretch relaxation time, which determines the time available for flow-enhanced crystallization. Moreover, we show how the time to reach the melting point can be derived semi-analytically and expressed in terms of the processing conditions in the case of pipe flow - ubiquitous in polymer processing. Whilst the full numerical model is required to quantitatively predict induction times and spherulite-size distributions, the proposed fundamental rule may be used practically to ensure, or eliminate, flow-enhanced structures by controlling the processing conditions or material properties. We discuss how ow-enhanced structures may be revealed only after post-processing annealing, and finally examine previous works that have successfully applied the model to extrusion-based three-dimensional (3D) printing
    • …
    corecore