748 research outputs found

    A periodic elastic medium in which periodicity is relevant

    Get PDF
    We analyze, in both (1+1)- and (2+1)- dimensions, a periodic elastic medium in which the periodicity is such that at long distances the behavior is always in the random-substrate universality class. This contrasts with the models with an additive periodic potential in which, according to the field theoretic analysis of Bouchaud and Georges and more recently of Emig and Nattermann, the random manifold class dominates at long distances in (1+1)- and (2+1)-dimensions. The models we use are random-bond Ising interfaces in hypercubic lattices. The exchange constants are random in a slab of size Ld1×λL^{d-1} \times \lambda and these coupling constants are periodically repeated along either {10} or {11} (in (1+1)-dimensions) and {100} or {111} (in (2+1)-dimensions). Exact ground-state calculations confirm scaling arguments which predict that the surface roughness ww behaves as: wL2/3,LLcw \sim L^{2/3}, L \ll L_c and wL1/2,LLcw \sim L^{1/2}, L \gg L_c, with Lcλ3/2L_c \sim \lambda^{3/2} in (1+1)(1+1)-dimensions and; wL0.42,LLcw \sim L^{0.42}, L \ll L_c and wln(L),LLcw \sim \ln(L), L \gg L_c, with Lcλ2.38L_c \sim \lambda^{2.38} in (2+1)(2+1)-dimensions.Comment: Submitted to Phys. Rev.

    Magnetic nanocomposites at microwave frequencies

    Full text link
    Most conventional magnetic materials used in the electronic devices are ferrites, which are composed of micrometer-size grains. But ferrites have small saturation magnetization, therefore the performance at GHz frequencies is rather poor. That is why functionalized nanocomposites comprising magnetic nanoparticles (e.g. Fe, Co) with dimensions ranging from a few nm to 100 nm, and embedded in dielectric matrices (e.g. silicon oxide, aluminium oxide) have a significant potential for the electronics industry. When the size of the nanoparticles is smaller than the critical size for multidomain formation, these nanocomposites can be regarded as an ensemble of particles in single-domain states and the losses (due for example to eddy currents) are expected to be relatively small. Here we review the theory of magnetism in such materials, and we present a novel measurement method used for the characterization of the electromagnetic properties of composites with nanomagnetic insertions. We also present a few experimental results obtained on composites consisting of iron nanoparticles in a dielectric matrix.Comment: 20 pages, 10 figures, 5 table

    Aeolian sans ripples: experimental study of saturated states

    Full text link
    We report an experimental investigation of aeolian sand ripples, performed both in a wind tunnel and on stoss slopes of dunes. Starting from a flat bed, we can identify three regimes: appearance of an initial wavelength, coarsening of the pattern and finally saturation of the ripples. We show that both initial and final wavelengths, as well as the propagative speed of the ripples, are linear functions of the wind velocity. Investigating the evolution of an initially corrugated bed, we exhibit non-linear stable solutions for a finite range of wavelengths, which demonstrates the existence of a saturation in amplitude. These results contradict most of the models.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Lett. Title changed, figures corrected and simplified, more field data included, text clarifie

    The prognostic value of extramural venous invasion in preoperative MRI of rectal cancer patients

    Get PDF
    Aim This study aimed to examine the prognostic value of extramural venous invasion observed in preoperative MRI on survival and recurrences. Method In total, 778 rectal cancer patients were evaluated in multidisciplinary meetings in Helsinki University Hospital during the years 2016-2018. 635 patients met the inclusion criteria of stage I-III disease and were intended for curative treatment at the time of diagnosis. 128 had extramural venous invasion in preoperative MRI. Results The median follow-up time was 2.5 years. In a univariate analysis extramural venous invasion was associated with poorer disease-specific survival (hazard ratio [HR] 2.174, 95% CI 1.118-4.224, P = 0.022), whereas circumferential margin = T3c or nodal positivity were not. Disease recurrence occurred in 17.3% of the patients: 13.4% had metastatic recurrence only, 1.7% mere local recurrence and 2.2% both metastatic and local recurrence. In multivariate analysis, extramural venous invasion (HR 1.734, 95% CI 1.127-2.667, P = 0.012) and nodal positivity (HR 1.627, 95% CI 1.071-2.472, P = 0.023) were risk factors for poorer disease-free survival (DFS). Circumferential marginPeer reviewe

    Quasi-static cracks and minimal energy surfaces

    Get PDF
    We compare the roughness of minimal energy(ME) surfaces and scalar ``quasi-static'' fracture surfaces(SQF). Two dimensional ME and SQF surfaces have the same roughness scaling, w sim L^zeta (L is system size) with zeta = 2/3. The 3-d ME and SQF results at strong disorder are consistent with the random-bond Ising exponent zeta (d >= 3) approx 0.21(5-d) (d is bulk dimension). However 3-d SQF surfaces are rougher than ME ones due to a larger prefactor. ME surfaces undergo a ``weakly rough'' to ``algebraically rough'' transition in 3-d, suggesting a similar behavior in fracture.Comment: 7 pages, aps.sty-latex, 7 figure
    corecore