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Periodic elastic medium in which periodicity is relevant
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ILaboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
2Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University,
East Lansing, Michigan 48824-1116
(Received 16 April 2000

We analyze, in both (1) and (2+1) dimensions, a periodic elastic medium in which the periodicity is
such that at long distances the behavior is always in the random-substrate universality class. This contrasts with
the models with an additive periodic potential in which, according to the field-theoretic analysis of Bouchaud
and Georges and more recently of Emig and Nattermann, the random manifold class dominates at long
distances in (* 1) and (2+1) dimensions. The models we use are random-bond Ising interfaces in hyper-
cubic lattices. The exchange constants are random in a slab df §i2&<\ and these coupling constants are
periodically repeated, with a period along eithef 10} or {11} [in (1+ 1) dimension$and{100 or {111} [in
(2+1) dimension$ Exact ground-state calculations confirm scaling arguments which predict that the surface
roughnessw behaves asv~L%3L<L, and w~LY2L>L, with L,~\%? in (1+1) dimensions, andv
~L%%2 | <L, andw~In(L),L>L, with L,~A?%in (2+1) dimensions.

PACS numbes): 05.70.Np, 75.10.Nr, 02.60.Pn, 68.35.Ct

. INTRODUCTION flected in long-distance correlations which behaveCgs)
~In?r| [in contrast to thermally rough correlations in dimen-
Periodic elastic media arise in a surprising array of probsjon (2+1), which grow asC(r)~Inr]]. There has been
lems, including spin or charge density waves, flux line lat-sopme uncertainty about whether the leading-order correla-
tices, and random magnets. A model frequently UseeB] tions found by Cardy and Ostlu{€O) [9] are correct, with
to describe a manifold, defined by the single-valued heightunctional renormalization-group calculations agreeing with
variableh(r) in a periodic elastic mediurtPEM), is CO [10,11], and variational calculations disagreeing. The
substrate roughness is randomly drawn from the interval
Sy - o - - (0,1) (in lattice units. This corresponds to a different sort of
77(PEM:f dr| SLVh(D "+ 7[h(N)]+Velh(N]1, (D) periodic elastic medium from that described in Y. Here,
the random substrate leads to a periodically repeated disorder
g Seen by an interface lying above the random substrate. This
arises due to the fact that the first, third, fifth, etc. atoms
ageposited at the same position on the random substrate see
xactly the same disorder when they land. This corresponds

whereV, is a periodic potential in the height direction an
the random potentiap is not periodic. This is directly analo-
gous to the model used to study lattice effects in therm
roughening and in field-theoretic studies of commensurat . . ) - !
phases in Ising magnets with competing interactions. In th o a random-bond Ising magnet in which the disorder is re-

model (1), the periodic potential is nonrandom and tends topealtettrj] W('jth p%riod=2 along the growthlg\irection. :jntagn-
pin the interface while the quenched random pinningera’ e disorder may range over a scale\(01), and this

- . leads to a periodic variation in the disorder on length skale
y[h(r)] tends to make the interface wander. The L~3urface|-he continuum model for this system is simply

tension termyIZ[Vh(F)]2 seeks a flat interface and also

competes with the quenched random pinning. Field-theoretic

calculationg 1-3] suggest that at long distances, far-1)- Y . R

and (2+1)-dimensional interfaces, the periodic pinning po- HP:J dr{E[Vh(r)]ZJr glh(r)]y, (2)

tential is irrelevant, and hence the interface scaling behavior

is in the random-bond Ising universality class where width

w?=(h?)—(h)2~L2% with the roughness exponeyt=2/3 _ . , R

in (1+1) and{~0.21(4-D) in (D+1),D=2 [4-8]. Note  but wherez is periodic in h(r), so that we require;[h(r)

that lattice calculations are strongly affected by a lattice pin-+\]=n[h(r)]. There has been considerable study of the

ning potential and have a flat phase even for large latticeandom substrateA(=2) problem, with the early contro-

sizes[8]. versy now being resolved in favor of a “super-rough”
Another problem which has been heavily studied is the‘Bragg-glass” phase in (2 1) dimensions in whichw

random substrate problef®—-11). This was introduced to ~In(L). Exact ground-state calculations have been very use-

model the effect of a random substrate on layers of absorbefl in resolving this controversjl12—15. It is quite easy to

atoms, and also serves as a model for the effect pfad see (see Sec. Il that in (1+1) dimensions, the random

random field on theXY model[9]. There is now a consensus substrate problem behaves as a random WRMW/), so that

that there is a disorder-dominated glassy phase in this model~ L2 Note, however, that it has been recently argued that

(in two substrate dimensiohat low temperatures that is re- although typical dislocations do not destroy the “Bragg-
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glass” ground state, optimal dislocations have negative en-
ergy, and hence are expected to destroy the Bragg glass in
(2+1) dimensiong16,17.

In this paper we study the Hamiltonidf) as a function
of the periodicity\ of the disorder. We show that at long
length scales in (£1) and (2+1) dimensions, the period-
icity is relevant and the random substrate universality class
holds. The paper is arranged as follows. Section Il sets up the
model and describes the way in which we calculate the exact
positions of interfaces in random Ising magnets. The scaling
theory describing the behavior of these interfaces is devel-
oped and tested in Sec. lll. We give a brief conclusion in
Sec. IV.

II. DISCRETE MODEL AND EXACT ALGORITHM

The model which we use to analyze the effect of periodic
disorder on interface properties is a spin-half Ising system
with random bond$RB) on square and cubic lattices. The
Hamiltonian is given by

HRB=—% Ji;SS;, (3)

whereJ;; >0 are coupling constants and the spin varialdes
take the values: 1. The spins on two opposite boundaries of
the lattices,h=1 andh=L, are fixed and have opposite
signs so that an interface must exist in the lattice. Our calcu-
lations are at zero temperature and we find the ground-state
interface properties for interfaces whose average normal vec-
tors lie in the{10} or {11} directions of square lattices and in
the {100 or {111} directions of cubic lattices. The coupling
constants are random in a slab of siz& !X\ and then
periodically repeated./\ times along a chosen direction.
The distributions used for thg;’s vary here from case to
case but are always chosen so that the interfaces are rough
even for small lattices sizes, and even in {i€0 orienta-
tion cubic systems. In Fig. 1, we illustrate the way in which
the periodic disorder is implemented for the0} and {11}
directions of a square lattice. As is now well knojih8,18,
the ground-state interface of the systé® can be found
exactlyusing the maximum flow algorithm. We have a cus-
tom implementation of the push-relabel algorithm for this

problem and using it we are able to find the exact ground-

state interface in Ising systems of one million sites in abouground state is exact is that at each step, all of the possible
1min of CPU time on a high-end workstation. random bonds in each column are tedtbére are only twp

Thus in this limit,w~ L2 as for a random walk. In contrast,
if the period diverges, the model returns to the random-bond
Ising universality clasfor equivalently the directed polymer

Consider the ground-state interface of a square lattice ifDP) in @ random mediurfor which w~L?". For finite X,
which the bond disorder has period 2 in #1l} orientation ~ We expect that the interface will seek to optimize its global
[e.g., Fig. 1a)]. It is obvious that the interface is highly wandering until the roughness reaches the wavelength of the
degenerate, as the ground-state interface may start in any Bgriodicity [19]. After that it has exhausted all possibilities
L/2 equivalent positions. Consider now starting to create &nd then returns to a random walk behavior. We thus have
ground-state interface from the left side of Figa)l To
minimize the interface energy one chooses the weakest bond.
Having chosen this weakest bond, the interface crosses this
weakest bond and chooses the weakest bond in the next col-
umn. This process of choosing the weakest bond continues
across the sample and, for period 2, the random walk so
generated gives thexact ground state. The reason this A natural scaling form based on these limiting behaviors is

FIG. 1. An example of interface in a random substrate problem,
with period\=2: (a) in {11} orientation;(b) the {10} orientation.
The dotted line describes the lower energy bond of the two bonds
(in the system of period )2 while the dashed line describes the
higher energy bond. A minimum energy path through each system
is indicated with a thick solid line.

Ill. SCALING THEORY AND NUMERICAL RESULTS

L8  w<\,

WL~ 12 sy @
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FIG. 2. The roughnesév) of manifolds divided by the wave- g
length of the periodicity X) vs normalized system sizé (\), E
where {={pp=13, for {10} oriented (1 1)-dimensional systems. %
The random bonds are from a uniform distribution with strength g |
AJij 1 /Jo=1 in the perpendiculalz) direction, andAJ;; /Jg %010
=0.1 in the paralle[x) direction in all layers in order to break the e
degeneracylJg) /Jo=0.2. The number of realizationd=200 for b
each wavelengthx €[10, ...,160] and system sizel >e[20? G
—128F]. The solid line has a slopg= {pp= 2 and the dashed line @
has a slop& = {gy=1/2. 2
10° 5 -] 5 1
10 10 10 e 10
L scaled system size (L/A ™)
w(L ) ~L23f | — ], 5
)\3/2 100 ; . )3
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where the scaling functioi(z) for the roughness has the ﬁ AX=6
asymptotic behavior S :i:;
= PO > 3=
[ const, z<1, . 2 oo, o=t
2D~ U6 ysq (6) £ « o =12
: ' 20 ' ax=13
e %
Tests of the asymptotic behaviofd) and the scaling B
function (5) and the results are presented in Figs. 2 and 3 for §
the {10} orientation. It is seen that the predictions of the  “ ;4 ‘ .
107 10” 10° % 10'
10° ' ' . . =10 scaled system size (z=L/A ")
—_ mA=15
“‘d *2=20 FIG. 4. (a) and (b) The data collapsey/\ vs LINY, ¢={rg
= :tﬁg =0.42, for the roughness of @21)-dimensional{100 oriented
AL v 2m35 systems. The random bonds are from uniform distribution with
s} » A=40 AJij 1 /Jo=1 in the perpendicular(z) direction and constant
= O A=45 Jij | /30=0.2 in the parallelX,y) direction. The number of realiza-
4 Ztég tions N=200 for each wavelengthe[3, ...,13 and system size
E . A%e60 L3e[6%3—90%]. (c) The scaling functiorf (z) =w/L?¢ of the rough-
%0 4 \=65 nessw(L,\) vs scaling parameter=L/\"¢. Finite-size effects
e v A=70 with logarithmic corrections are visible as a curvature for srhall
B > A=80
Tc? :;t?go scaling theory are nicely confirmed. Similar results were
2 . xa=160  found for the{11} orientation, too.

10 107 107 10" 10° 10 10% We turn now to the behavior of random surfaces in (2

+1) dimensions. There, renormalization-gro(RG) tech-
niques have been applied to the random-phase sine-Gordon
FIG. 3. The scaling functionf(z)=w/L¢ of the roughness model[9-11], to random-bond interfaces, and to fairly gen-
w(L,\) vs scaling parameter=L/\", where¢={pp=% for the  eral models of periodic elastic media. Numerically, exact
same data as in Fig. 2. The solid line has a slopéf— {pp= maximum-flow—minimum-cut and minimum-cost-matching
—1/6. algorithms[13] and Monte Carlo methodg20] have been

scaled system size (z=L/7»1/§)
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used. In the random substrate problem, there is a lowsize effects. This is understandable as large system sizes are

temperature “super-rough” phase wheré~In?(L), while

necessary to see the asymptotic random manifold behavior,

in the random manifold problem, the surface roughness igven in thex —co limit [8,7]. Though finite-size effects are

found to behave asv~ L‘re, where [gg=0.42+0.01. The

clearly evident in the scaling plot of Fig(@, the data col-

qualitative reasoning expressed in the first paragraph of thiepse at largea is quite satisfying. It is clear that the random
section also applies to higher dimensions, so that we expesubstratéBragg glassuniversality clas$12,13 is dominant
the behavior oft, to be in the random substrate universality at large enough length scales. We have tested the behavior in

classes at long length scales>\, while the random mani-
fold universality class is dominant at short length scales

<\. The limiting behaviors in dimensiof2+1) are then

L¢rRB, W<\,
(LA~ InL, w>N\. @
We thus expect
L L ¢ref .
w(L,\)~ N L (8)
and that the scaling function in (21) dimensions is
. const, z<1,
2~ Inz/z%Re, z>1, ©

with the scaling parameter=L/\Y¢re. The asymptotic be-

haviors of Eq.(7) are illustrated in Figs. @) and 4b) for
interfaces in the {100, orientation. The
asymptotic behavior is clearly confirmed in Figa¥ but the

random manifold behavior is still strongly effected by finite-

logarithmic

the {111} orientations and find thgtl11} interfaces behave
in a similar manner.

IV. CONCLUSIONS

We have studied the scaling behavior of an elastic mani-
fold in the presence of a periodically repeated ‘“strong”
bond disorder. We find that in (1) and in (2+1) dimen-
sions, and at long distances, the periodicity is relevant so
these interfaces are in the random substrate universality
class. This is to be contrasted with an interface in a system
with a periodic potential and with random disorder. In the
latter problem the periodic potential is claimed to be irrel-
evant on long length scales in {11) and (2+1) dimen-
sions for any disordef1-3|, though at weak disorder nu-
merical work on{100 orientation cubic lattices indicates a
strong tendency to order due to lattice effd@21].
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