82 research outputs found

    Organic carbon content and carbon isotope variations across the Permo-Triassic boundary in the Gartnerkofel-1 borehole, Carnic Alps, Austria

    Get PDF
    The Gartnerkofel borehole is one of the most thoroughly studied and described Permo-Triassic sections in the world. Detailed bulk organic carbon isotope studies show a negative base shift from − 24‰ to − 28‰ in the Latest Permian which latter value persists into the Earliest Triassic after which it decreases slightly to − 26‰. Two strongly negative peaks of > − 38‰ in the Latest Permian and a lesser peak of − 31‰ in the Early Triassic are too negative to be due to a greater proportion of more negative organic matter and must be due to very negative methane effects. The overall change to more negative values across the Bulla/Tesero boundary fits the relative rise in sea level for this transition based on the facies changes. A positive shift in organic carbon isotope values at the Late Permian Event Horizon may be due to an increase in land-derived organic detritus at this level—a feature shown by all Tethyan Permo-Triassic boundary sections though these other sections do not have the same values. Carbonate carbon isotope trends are similar in all sections dropping by 2–3 units across the Permo-Triassic boundary. Gartnerkofel carbonate oxygen values are surprisingly, considering the ubiquitous dolomitization, compatible with values elsewhere and indicate reasonable tropical temperatures of 60 °C in the Latest Permian sabkhas to 20–40 °C in the overlying marine transition beds. Increased land-derived input at the Late Permian Event Horizon may be due to offshore transport by tsunamis whose deposits have been recognized in India at this level

    Accumulation of poly(A) RNA in nuclear granules enriched in Sam68 in motor neurons from the SMNA7 mouse model of SMA

    Get PDF
    Spinal muscular atrophy (SMA) is a severe motor neuron (MN) disease caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene, which results in reduced levels of the SMN protein and the selective degeneration of lower MNs. The best-known function of SMN is the biogenesis of spliceosomal snRNPs, the major components of the pre-mRNA splicing machinery. Therefore, SMN deficiency in SMA leads to widespread splicing abnormalities. We used the SMN?7 mouse model of SMA to investigate the cellular reorganization of polyadenylated mRNAs associated with the splicing dysfunction in MNs. We demonstrate that SMN deficiency induced the abnormal nuclear accumulation in euchromatin domains of poly(A) RNA granules (PARGs) enriched in the splicing regulator Sam68. However, these granules lacked other RNA-binding proteins, such as TDP43, PABPN1, hnRNPA12B, REF and Y14, which are essential for mRNA processing and nuclear export. These effects were accompanied by changes in the alternative splicing of the Sam68-dependent Bcl-x and Nrnx1 genes, as well as changes in the relative accumulation of the intron-containing Chat, Chodl, Myh9 and Myh14 mRNAs, which are all important for MN functions. PARG-containing MNs were observed at presymptomatic SMA stage, increasing their number during the symptomatic stage. Moreover, the massive accumulations of poly(A) RNA granules in MNs was accompanied by the cytoplasmic depletion of polyadenylated mRNAs for their translation. We suggest that the SMN-dependent abnormal accumulation of polyadenylated mRNAs and Sam68 in PARGs reflects a severe dysfunction of both mRNA processing and translation, which could contribute to SMA pathogenesis.This work was supported by grants from: “DirecciĂłn General de InvestigaciĂłn” of Spain (BFU2014-54754-P and SAF2015-70801-R, cofinanced by FEDER) and “Instituto de InvestigaciĂłn MarquĂ©s de Valdecilla-IDIVAL (NVAL17/22). Dr. Tapia is the recipient of a grant from SMA Europe and FundAME (Spain)

    The Winchcombe meteorite, a unique and pristine witness from the outer solar system.

    Get PDF
    Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid. Recovered only hours after falling, the composition of the Winchcombe meteorite is largely unmodified by the terrestrial environment. It contains abundant hydrated silicates formed during fluid-rock reactions, and carbon- and nitrogen-bearing organic matter including soluble protein amino acids. The near-pristine hydrogen isotopic composition of the Winchcombe meteorite is comparable to the terrestrial hydrosphere, providing further evidence that volatile-rich carbonaceous asteroids played an important role in the origin of Earth's water

    Aqueous alteration processes in Jezero crater, Mars—implications for organic geochemistry

    Get PDF
    The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments

    Seeking Signs of Life on Mars: A Strategy for Selecting and Analyzing Returned Samples from Hydrothermal Deposits

    Get PDF
    Highly promising locales for biosignature prospecting on Mars are ancient hydrothermal deposits, formed by the interaction of surface water with heat from volcanism or impacts. On Earth, they occur throughout the geological record (to at least approx. 3.5 Ga), preserving robust mineralogical, textural and compositional evidence of thermophilic microbial activity. Hydrothermal systems were likely present early in Mars' history, including at two of the three finalist candidate landing sites for M2020, Columbia Hills and NE Syrtis Major. Hydrothermal environments on Earth's surface are varied, constituting subaerial hot spring aprons, mounds and fumaroles; shallow to deep-sea hydrothermal vents (black and white smokers); and vent mounds and hot-spring discharges in lacustrine and fluvial settings. Biological information can be preserved by rapid, spring-sourced mineral precipitation, but also could be altered or destroyed by postdepositional events. Thus, field observations need to be followed by detailed laboratory analysis to verify potential biosignatures. See Attachmen

    Seeking Signs of Life on Mars: the Importance of Sedimentary Suites as Part of a Mars Sample Return Campaign

    Get PDF
    Seeking the signs of life on Mars is often considered the "first among equal" objectives for any potential Mars Sample Return (MSR) campaign. Among the geological settings considered to have the greatest potential for recording evidence of ancient life or its pre-biotic chemistry on Mars are lacustrine (and marine, if ever present) sedimentary depositional environments. This potential, and the possibility of returning samples that could meaningfully address this objective, have been greatly enhanced by investigations of an ancient redox stratified lake system in Gale crater by the Curiosity rover

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link
    • 

    corecore