1,656 research outputs found

    First Fatal Oseltamivir-Resistant 2009 Pandemic Influenza A (H1N1) Case in an Adult in Korea

    Get PDF
    It has been suggested that oseltamivir-resistant influenza viruses harboring the H274/275Y mutation are less virulent than are those that are oseltamivir-sensitive, and fatality attributed to infection with an oseltamivir-resistant virus is very rare. Here we report the first fatal adult case of oseltamivir-resistant 2009 pandemic influenza A (H1N1) in Korea. A 60-year-old Korean male who had hypertension, diabetes mellitus, chronic kidney disease, and dilated cardiomyopathy visited Chonnam National University Hospital because of a 7-day history of chest pain and dyspnea. The patient was at another clinic and had been medicated with oseltamivir (75 mg twice daily) beginning 7 days before admission. Empirical antibiotics were started on the first day of hospitalization. Reverse-transcriptase polymerase chain reaction for 2009 pandemic influenza A (H1N1) was reported to be positive, and a double dose of oseltamivir (150 mg twice per day) was started on day four of hospitalization. However, the pneumonia worsened and the patient died, despite 3 days of high-dose antiviral therapy and 6 days of antibacterial therapy. An H275Y mutation was detected in the neuraminidase gene sequence. This case shows that oseltamivir resistance after short-term drug exposure is possible and can be fatal, emphasizing that early use of zanamivir should be considered in suspicious cases

    Overexpression of hepatic serum amyloid A1 in mice increases IL-17-producing innate immune cells and decreases bone density

    Get PDF
    Serum amyloid A (SAA) is an acute-phase protein produced primarily in the liver that plays a key role in both the initiation and maintenance of inflammation. Rapidly secreted SAA induces neutrophilia at inflammatory sites, initiating inflammation and inducing the secretion of various cytokines, including TNF-α, IL-6, and IL-17. IL-17 is expressed in several inflammatory cells, including innate immune cells such as γδT cells, ILC3 cells, and neutrophils. Increased IL-17 levels exacerbate various inflammatory diseases. Among other roles, IL-17 induces bone loss by increasing receptor activator of nuclear factor-κB ligand (RANKL) secretion, which stimulates osteoclast differentiation. Several studies have demonstrated that chronic inflammation induces bone loss, suggesting a role for SAA in bone health. To test this possibility, we observed an increase in IL-17-producing innate immune cells, neutrophils, and γδT cells in these mice. In 6-month-old animals, we detected increased osteoclast-related gene expression and IL- 17 expression in bone lysates. We also observed an increase in neutrophils that secreted RANKL in the bone marrow of TG mice. Finally, we demonstrated decreased bone mineral density in these transgenic (TG) mice. Our results revealed that the TG mice have increased populations of IL-17-producing innate immune cells, γδT cells, and neutrophils in TG mice. We additionally detected increased RANKL and IL-17 expression in the bone marrow of 6-month-old TG mice. Furthermore, we confirmed significant increases in RANKL-expressing neutrophils in TG mice and decreased bone mineral density. Our results provide evidence that chronic inflammation induced by SAA1 causes bone loss via IL-17-secreting innate immune cells. © 2021 American Society for Biochemistry and Molecular Biology Inc.. All rights reserved.1

    Oncologic outcomes in men with metastasis to the prostatic anterior fat pad lymph nodes: a multi-institution international study

    Get PDF
    BackgroundThe presence of lymph nodes (LN) within the prostatic anterior fat pad (PAFP) has been reported in several recent reports. These PAFP LNs rarely harbor metastatic disease, and the characteristics of patients with PAFP LN metastasis are not well-described in the literature. Our previous study suggested that metastatic disease to the PAFP LN was associated with less severe oncologic outcomes than those that involve the pelvic lymph node (PLN). Therefore, the objective of this study is to assess the oncologic outcome of prostate cancer (PCa) patients with PAFP LN metastasis in a larger patient population.MethodsData were analyzed on 8800 patients from eleven international centers in three countries. Eighty-eight patients were found to have metastatic disease to the PAFP LNs (PAFP+) and 206 men had isolated metastasis to the pelvic LNs (PLN+). Clinicopathologic features were compared using ANOVA and Chi square tests. The Kaplan-Meier method was used to calculate the time to biochemical recurrence (BCR).ResultsOf the eighty-eight patients with PAFP LN metastasis, sixty-three (71.6%) were up-staged based on the pathologic analysis of PAFP and eight (9.1%) had a low-risk disease. Patients with LNs present in the PAFP had a higher incidence of biopsy Gleason score (GS) 8-10, pathologic N1 disease, and positive surgical margin in prostatectomy specimens than those with no LNs detected in the PAFP. Men who were PAFP+ with or without PLN involvement had more aggressive pathologic features than those with PLN disease only. However, there was no significant difference in BCR-free survival regardless of adjuvant therapy. In 300 patients who underwent PAFP LN mapping, 65 LNs were detected. It was also found that 44 out of 65 (67.7%) nodes were located in the middle portion of the PAFP.ConclusionsThere was no significant difference in the rate of BCR between the PAFP LN+ and PLN+ groups. The PAFP likely represents a landing zone that is different from the PLNs for PCa metastasis. Therefore, the removal and pathologic analysis of PAFP should be adopted as a standard procedure in all patients undergoing radical prostatectomy

    ZNF507 affects TGF-β signaling via TGFBR1 and MAP3K8 activation in the progression of prostate cancer to an aggressive state

    Get PDF
    Background: The progression of prostate cancer (PC) to the highly aggressive metastatic castration-resistant prostate cancer (mCRPC) or neuroendocrine prostate cancer (NEPC) is a fatal condition and the underlying molecular mechanisms are poorly understood. Here, we identified the novel transcriptional factor ZNF507 as a key mediator in the progression of PC to an aggressive state. Methods: We analyzed ZNF507 expression in the data from various human PC database and high-grade PC patient samples. By establishment of ZNF507 knockdown and overexpression human PC cell lines, we assessed in vitro PC phenotype changes including cell proliferation, survival, migration and invasion. By performing microarray with ZNF507 knockdown PC cells, we profiled the gene clusters affected by ZNF507 knockdown. Moreover, ZNF507 regulated key signal was evaluated by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Finally, we performed xenograft and in vivo metastasis assay to confirm the effect of ZNF507 knockdown in PC cells. Results: We found that ZNF507 expression was increased, particularly in the highly graded PC. ZNF507 was also found to be associated with metastatic PC of a high grade. Loss- or gain-of-function–based analysis revealed that ZNF507 promotes the growth, survival, proliferation, and metastatic properties of PC (e.g., epithelial-mesenchymal transition) by upregulating TGF-β signaling. Profiling of gene clusters affected by ZNF507 knockdown revealed that ZNF507 positively regulated the transcription of TGFBR1, MAP3K8, and FURIN, which in turn promoted the progression of PC to highly metastatic and aggressive state. Conclusions: Our findings suggest that ZNF507 is a novel key regulator of TGF-β signaling in the progression of malignant PC and could be a promising target for studying the development of advanced metastatic PCs. © 2021, The Author(s).1

    JAZF1 heterozygous knockout mice show altered adipose development and metabolism

    Get PDF
    Background: Juxtaposed with another zinc finger protein 1 (JAZF1) is associated with metabolic disorders, including type 2 diabetes mellitus (T2DM). Several studies showed that JAZF1 and body fat mass are closely related. We attempted to elucidate the JAZF1 functions on adipose development and related metabolism using in vitro and in vivo models. Results: The JAZF1 expression was precisely regulated during adipocyte differentiation of 3T3-L1 preadipocyte and mouse embryonic fibroblasts (MEFs). Homozygous JAZF1 deletion (JAZF1-KO) resulted in impaired adipocyte differentiation in MEF. The JAZF1 role in adipocyte differentiation was demonstrated by the regulation of PPARγ—a key regulator of adipocyte differentiation. Heterozygous JAZF1 deletion (JAZF1-Het) mice fed a normal diet (ND) or a high-fat diet (HFD) had less adipose tissue mass and impaired glucose homeostasis than the control (JAZF1-Cont) mice. However, other metabolic organs, such as brown adipose tissue and liver, were negligible effect on JAZF1 deficiency. Conclusion: Our findings emphasized the JAZF1 role in adipocyte differentiation and related metabolism through the heterozygous knockout mice. This study provides new insights into the JAZF1 function in adipose development and metabolism, informing strategies for treating obesity and related metabolic disorders. © 2021, The Author(s).1

    Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) is a clinically challenging malignant tumor worldwide. As a natural product and sesquiterpene lactone, Costunolide (CTD) has been reported to possess anticancer activities. However, the regulation mechanism and precise target of this substance remain undiscovered in CRC. In this study, we found that CTD inhibited CRC cell proliferation in vitro and in vivo by targeting AKT. METHODS: Effects of CTD on colon cancer cell growth in vitro were evaluated in cell proliferation assays, migration and invasion, propidium iodide, and annexin V-staining analyses. Targets of CTD were identified utilizing phosphoprotein-specific antibody array; Costunolide-sepharose conjugated bead pull-down analysis and knockdown techniques. We investigated the underlying mechanisms of CTD by ubiquitination, immunofluorescence staining, and western blot assays. Cell-derived tumour xenografts (CDX) in nude mice and immunohistochemistry were used to assess anti-tumour effects of CTD in vivo. RESULTS: CTD suppressed the proliferation, anchorage-independent colony growth and epithelial-mesenchymal transformation (EMT) of CRC cells including HCT-15, HCT-116 and DLD1. Besides, the CTD also triggered cell apoptosis and cell cycle arrest at the G2/M phase. The CTD activates and induces p53 stability by inhibiting MDM2 ubiquitination via the suppression of AKT's phosphorylation in vitro. The CTD suppresses cell growth in a p53-independent fashion manner; p53 activation may contribute to the anticancer activity of CTD via target AKT. Finally, the CTD decreased the volume of CDX tumors without of the body weight loss and reduced the expression of AKT-MDM2-p53 signaling pathway in xenograft tumors. CONCLUSIONS: Our project has uncovered the mechanism underlying the biological activity of CTD in colon cancer and confirmed the AKT is a directly target of CTD. All of which These results revealed that CTD might be a new AKT inhibitor in colon cancer treatment, and CTD is worthy of further exploration in preclinical and clinical trials.1

    Generation of double knockout cattle via CRISPR-Cas9 ribonucleoprotein (RNP) electroporation

    Get PDF
    Background Genome editing has been considered as powerful tool in agricultural fields. However, genome editing progress in cattle has not been fast as in other mammal species, for some disadvantages including long gestational periods, single pregnancy, and high raising cost. Furthermore, technically demanding methods such as microinjection and somatic cell nuclear transfer (SCNT) are needed for gene editing in cattle. In this point of view, electroporation in embryos has been risen as an alternative. Results First, editing efficiency of our electroporation methods were tested for embryos. Presence of mutation on embryo was confirmed by T7E1 assay. With first combination, mutation rates for MSTN and PRNP were 57.6% ± 13.7% and 54.6% ± 13.5%, respectively. In case of MSTN/BLG, mutation rates were 83.9% ± 23.6% for MSTN, 84.5% ± 18.0% for BLG. Afterwards, the double-KO embryos were transferred to surrogates and mutation rate was identified in resultant calves by targeted deep sequencing. Thirteen recipients were transferred for MSTN/PRNP, 4 calves were delivered, and one calf underwent an induction for double KO. Ten surrogates were given double-KO embryos for MSTN/BLG, and four of the six calves that were born had mutations in both genes. Conclusions These data demonstrated that production of genome edited cattle via electroporation of RNP could be effectively applied. Finally, MSTN and PRNP from beef cattle and MSTN and BLG from dairy cattle have been born and they will be valuable resources for future precision breeding.This study was financially supported by the National Research Foundation of Korea (NRF-2021R1A5A1033157 for SRC program: 382 Comparative medicine Disease Research Center; NRF-2021R1F1A105195313), the Research Institute of Veterinary Science, the BK21 Four for Future Veterinary Medicine Leading Education and Research Center, and a Seoul National University (SNU) grant (#550e2020005

    Search for the Sagittarius Tidal Stream of Axion Dark Matter around 4.55 μ\mueV

    Full text link
    We report the first search for the Sagittarius tidal stream of axion dark matter around 4.55 μ\mueV using CAPP-12TB haloscope data acquired in March of 2022. Our result excluded the Sagittarius tidal stream of Dine-Fischler-Srednicki-Zhitnitskii and Kim-Shifman-Vainshtein-Zakharov axion dark matter densities of ρa0.184\rho_a\gtrsim0.184 and 0.025\gtrsim0.025 GeV/cm3^{3}, respectively, over a mass range from 4.51 to 4.59 μ\mueV at a 90% confidence level.Comment: 6 pages, 7 Figures, PRD Letter accepte
    corecore