2,178 research outputs found

    User Attraction via Wireless Charging in Cellular Networks

    Full text link
    A strong motivation of charging depleted battery can be an enabler for network capacity increase. In this light we propose a spatial attraction cellular network (SAN) consisting of macro cells overlaid with small cell base stations that wirelessly charge user batteries. Such a network makes battery depleting users move toward the vicinity of small cell base stations. With a fine adjustment of charging power, this user spatial attraction (SA) improves in spectral efficiency as well as load balancing. We jointly optimize both enhancements thanks to SA, and derive the corresponding optimal charging power in a closed form by using a stochastic geometric approach.Comment: to be presented in IEEE International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt) Workshop on Green Networks (GREENNET) 2016, Arizona, USA (8 pages, 4 figures

    Generalized gravity model for human migration

    Full text link
    The gravity model (GM) analogous to Newton's law of universal gravitation has successfully described the flow between different spatial regions, such as human migration, traffic flows, international economic trades, etc. This simple but powerful approach relies only on the 'mass' factor represented by the scale of the regions and the 'geometrical' factor represented by the geographical distance. However, when the population has a subpopulation structure distinguished by different attributes, the estimation of the flow solely from the coarse-grained geographical factors in the GM causes the loss of differential geographical information for each attribute. To exploit the full information contained in the geographical information of subpopulation structure, we generalize the GM for population flow by explicitly harnessing the subpopulation properties characterized by both attributes and geography. As a concrete example, we examine the marriage patterns between the bride and the groom clans of Korea in the past. By exploiting more refined geographical and clan information, our generalized GM properly describes the real data, a part of which could not be explained by the conventional GM. Therefore, we would like to emphasize the necessity of using our generalized version of the GM, when the information on such nongeographical subpopulation structures is available.Comment: 14 pages, 6 figures, 2 table

    DeeLeMa: Missing information search with Deep Learning for Mass estimation

    Full text link
    We present DeeLeMa, a deep learning network to analyze energies and momenta in particle collisions at high energy colliders, especially DeeLeMa is constructed based on symmetric event topology, and the generated mass distributions show robust peaks at the physical masses after the combinatoric uncertainties, and detector smearing effects are taken into account. DeeLeMa can be widely used in different event topologies by adopting the corresponding kinematic symmetries

    The impact of Arctic sea ice loss on mid-Holocene climate.

    Get PDF
    Mid-Holocene climate was characterized by strong summer solar heating that decreased Arctic sea ice cover. Motivated by recent studies identifying Arctic sea ice loss as a key driver of future climate change, we separate the influences of Arctic sea ice loss on mid-Holocene climate. By performing idealized climate model perturbation experiments, we show that Arctic sea ice loss causes zonally asymmetric surface temperature responses especially in winter: sea ice loss warms North America and the North Pacific, which would otherwise be much colder due to weaker winter insolation. In contrast, over East Asia, sea ice loss slightly decreases the temperature in early winter. These temperature responses are associated with the weakening of mid-high latitude westerlies and polar stratospheric warming. Sea ice loss also weakens the Atlantic meridional overturning circulation, although this weakening signal diminishes after 150-200 years of model integration. These results suggest that mid-Holocene climate changes should be interpreted in terms of both Arctic sea ice cover and insolation forcing

    Timing information at HL-LHC: Complete determination of masses of Dark Matter and Long lived particle

    Get PDF
    A long standing problem in kinematics at the hadron colliders is to determine the mass of invisible particles. This issue is particularly important for the signals of dark matter, which becomes one of the prominent targets of future collider experiments. In this paper, we show that the additional information from the precise timing measurement, which will be available at the planned high-liminosity run of the LHC (HL-LHC), will shade new light on the kinematics study. As a concrete example, we focus on the signal of the pair produced long-lived particles (LLP1,2LLP_{1,2}), respectively leaving displaced vertex with visible (V1,2V_{1,2}) and invisible (I1,2I_{1,2}) final state, pp→LLP1+LLP2→(V1+I1)+(V2+I2)pp \to LLP_1+LLP_2 \to (V_1+I_1)+(V_2+I_2). We explicitly show that this system is completely solvable with timing information.Comment: 14 pages, 5 figure

    Timing information at HL-LHC: complete determination of masses of dark matter and long lived particle

    Get PDF
    A long-standing kinematic challenge in data analysis at hadron colliders is the determination of the masses of invisible particles. This issue is particularly relevant in searches for evidence of dark matter production, which remains one of the prominent targets of future collider experiments. In this paper, we show that the additional information from the precision timing measurements, provided by planned detector upgrades during the high- luminosity run of the LHC (HL-LHC), allows for previously unrealizable measurements of invisible particle kinematics. As a concrete example, we focus on the signal of pair produced long-lived particles (LLP1,2), each decaying with a displaced vertex to visible (V1,2) and invisible (I1,2) final state particles, pp → LLP1 + LLP2 → (V1 + I1) + (V2 + I2). We explicitly show that the complete kinematics of the invisible particles in such events can be determined with the addition of timing information, and evaluate the precision with which the masses of new long-lived and invisible particles can be determined
    • …
    corecore