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Abstract: A long-standing kinematic challenge in data analysis at hadron colliders is

the determination of the masses of invisible particles. This issue is particularly relevant in

searches for evidence of dark matter production, which remains one of the prominent targets

of future collider experiments. In this paper, we show that the additional information from

the precision timing measurements, provided by planned detector upgrades during the high-

luminosity run of the LHC (HL-LHC), allows for previously unrealizable measurements of

invisible particle kinematics. As a concrete example, we focus on the signal of pair produced

long-lived particles (LLP1,2), each decaying with a displaced vertex to visible (V1,2) and

invisible (I1,2) final state particles, pp → LLP1 + LLP2 → (V1 + I1) + (V2 + I2). We

explicitly show that the complete kinematics of the invisible particles in such events can be

determined with the addition of timing information, and evaluate the precision with which

the masses of new long-lived and invisible particles can be determined.
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1 Introduction

After Run-3 of the LHC a significant upgrade is planned for the High Luminosity LHC

(HL-LHC) [1] period of operation, where expected instantaneous luminosities are a factor of

five times larger than the current LHC nominal conditions. While these more intense con-

ditions will enable the LHC experiments to accumulate more than an order of magnitude

larger dataset than all of the preceding LHC runs, they also exacerbate the experimental

challenge of the multiple pile-up interactions appearing in each event. To mitigate degra-

dation of LHC event reconstruction performance resulting from the potentially hundreds

of pile-up interactions expected in an HL-LHC event, both CMS [2] and ATLAS [3] are

developing precision timing detectors, significantly expanding the capabilities of the experi-

ments. With detector elements capable of time-stamping charged particles with a precision

of order σt ' 30 ps, these precision timing detectors can not only be used to disambiguate

interaction vertices but also introduce the possibility for new approaches to searching for

evidence of new physics involving long-lived particles (LLPs) through time-of-flight (ToF)

measurements [4, 5].

In this paper we further explore applications of timing information in collider event

reconstruction, focusing on final states with massive invisible particles (i.e. dark matter)
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Figure 1. Schematic layout of an HL-LHC detector with the inclusion of a hermetic timing layer.

following from the decays of neutral LLPs. Specifically, we explicitly demonstrate how

timing information allows for the determination of the masses of invisible particles and

neutral LLPs in events where they are singly or pair-produced. In these cases, each LLP

decays into visible and invisible particles, with: pp→ LLPa+LLPb → (Va+Ia)+(Vb+Ib).

This signature appears in many well-motivated beyond the standard model (BSM) theories,

such as the second lightest supersymmetric particle decaying to the lightest supersymmet-

ric particle (LSP) and the second lightest Kaluza-Klein particle decaying to the lightest

Kaluza-Klein particle (LKP), respectively [6–11]. When a LLP is charged, or decays exclu-

sively into visible particles, the kinematics of the LLP can be measured directly. However,

when invisible particles are present in the decays of neutral LLPs the kinematics of these

particles are severely under-constrained with the measurement capabilities of the existing

LHC detectors, as has been studied extensively (see e.g. [9, 12–16]). Here, we demonstrate

how the anticipated addition of precision timing measurements can be used to determine

the kinematic properties of these previously intractable events in their entirety.

This paper is structured as follows: in section 2, we develop two reconstruction methods

for the events with LLPs and their decays to invisible particles and visible particles using

the timing and vertex measurement capabilities of the HL-LHC detectors. The performance

of these reconstruction methods is described in section 3 using simulated decays of LLPs

and an emulation of a HL-LHC detector with pile-up conditions in benchmark new physics

scenarios. Finally, we conclude in section 4.

2 LLP reconstruction using timing information

We begin by reviewing the general properties of the proposed precision timing detectors

at the HL-LHC, focusing in particular on the hermetic design of the CMS timing layer [2].

An HL-LHC detector with such a timing layer is shown schematically in figure 1. The
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picosecond timing detector will be installed between the inner tracker (green) and the

electromagnetic calorimeter (cyan), providing uniform coverage of the barrel as well as the

end-cap of the detector. In the case of the ATLAS timing detector, only the end-cap region

will be instrumented with precision timing elements [3]. These timing detectors are capable

of detecting minimum ionizing particles (MIPs) with excellent efficiency (nearly 100%) and

time resolution of order 30 ps throughout the lifetime of the HL-LHC.

At the HL-LHC, during each proton bunch crossing, pile-up interactions are distributed

in space and time over the luminous region with dimensions of order 5 cm and 200 ps,

respectively. The combination of the inner tracking detector and precision timing layer is

able to measure the trajectory of charged particles from initial state radiation (ISR) and

the underlying event with an associated time-of-arrival at the timing detector, for each

separate interaction. This information can then be used to reconstruct, in space and time,

each of the interaction vertices in the event, with the additional time dimension allowing

for the disambiguation in the dense HL-LHC environment.

A neutral LLP produced in a HL-LHC event leaves no corresponding track in the

detector, but if it decays to at least two visible, reconstructable particles then its secondary

decay vertex can be measured in four dimensions in the same fashion. By associating such

a secondary vertex with the corresponding primary interaction vertex in an event will allow

for the measurement of the distance and time-of-flight of the LLP such that its velocity

can be determined [4]. While LLP searches have been explored in the CMS MTD TDR,

that work assumed that the mass of the invisible particles is known [2]. Here, we examine

how this technique can be expanded to incorporate additional kinematic information, like

the measured missing transverse energy, to fully reconstruct the decays of these neutral

LLPs in events where they are singly or pair-produced.

We consider the scenario where an LLP travels between 0.1 cm and 1 m and decays

in the tracker into visible (V ) and invisible (I) particles. While V and I may correspond

to one or more particles in general we consider V (and I) as single objects. We further

assume that V provides enough measurements to reconstruct the location and time of the

secondary vertex where it was produced. The anticipated uncertainties in the displacement

in both time (∆tToF) and space (∆rLLP) of the reconstructed secondary vertex associated

with the primary vertex is |δ(∆rLLP)| . (10–30)µm and |δ(∆tToF)| . (30–300) ps [2]. For

LLPs with displacements in excess of these uncertainties, such a detector would be able

to resolve the displaced decays over a range of lifetimes and kinematic phase-space. By

resolving these displaced decays, we can then calculate the velocity of the LLP as

βLLP =
∆rLLP
∆tToF

. (2.1)

Reconstructing βLLP opens the door to new possibilities for discovery, irrespective of the

presence of invisible particles (such as dark matter) in these decays.

2.1 LLP decays to visible and invisible particles (LLP → V + I)

We first examine the two body decay of a single LLP (LLP) to a visible (V ) and an invisible

(I) particle (LLP → V + I). The visible particle (V ), by definition here, is identified
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unambiguously with its reconstructed 4-momentum in the lab frame: P lab
V = (E lab

V ,p lab
V ).

The mass of V is calculable by m2
V = E lab

V
2 − p lab

V
2
. The 3-velocity of the LLP in the

lab frame β lab
LLP is also measurable, as explained in the previous section. As the energy of

the LLP is not directly measured, it is treated as an unknown kinematic parameter to be

determined. Even in the absence of knowledge of the LLP energy, the measured velocity

can still be used to evaluate measured 4-vectors in the rest frame of the LLP by boosting

from the lab frame by β lab
LLP:

E LLP
V = γ lab

P

(
E lab
V − p lab

V · β lab
LLP

)
, (2.2)

where γ lab
P = 1/

√
1−

(
β lab
P

)2
corresponds to the relativistic gamma factor. Energy-

momentum conservation in this reference frame (pµLLP = pµV +pµI = (mP , 0)) constrains the

3-momentum of the invisible particle from that of the visible one, with p LLP
I = −p LLP

V .

Furthermore, the energy of the visible particle evaluated in the LLP rest fame is sensitive

to the masses of the particles appearing in this decay process, with

E LLP
V =

m2
LLP −m2

I +m2
V

2mLLP
, (2.3)

where mLLP,mI and mV are the masses of the LLP, invisible, and visible particle, respec-

tively. Combining eq. (2.2) and eq. (2.3) yields the expression for the mass of the LLP,

mLLP = E LLP
V +

√
(E LLP

V )2 +m2
I −m2

V . (2.4)

As E LLP
V and mV are measurable, the mass of the invisible particle is the only unknown

quantity appearing in this expression.1

The transverse components of the invisible particle momentum in the lab frame, p lab
I,T ,

can be inferred from the measured missing transverse energy. By equating the sum of the

transverse momenta of visible and invisible particles with that of the LLP, the energy of

the LLP in the lab frame can be calculated from measured quantities as

p lab
LLP,T = p lab

I,T + p lab
V,T

= E lab
LLPβ

lab
LLP,T (2.5)

⇒ E lab
LLP =

β lab
LLP,T ·

(
p lab
I,T + p lab

V,T

)
|β lab

LLP,T |2
. (2.6)

The mass of the LLP can then be measured according to

mLLP =
(
γ lab
LLP

)−1
E lab

LLP (2.7)

=

√
1−

(
β lab
LLP

)2
|βlab

LLP,T |2
β lab
LLP,T ·

(
p lab
I,T + p lab

V,T

)
. (2.8)

1Even though the relations of the masses corresponds to the solution of a quadratic equation there’s

no sign ambiguity involved in eq. (2.4); the sign in front of the square root is chosen by considering the

massless limit, mV → 0 and mI → 0.
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Similarly, the relation in eq. (2.4) can be used to express the mass of the invisible

particle:

mI =
√
m2

LLP − 2mLLPE LLP
V +m2

V . (2.9)

While highlighting the measured masses, the above expression corresponds to the complete

determination of the masses and momentum of all the particles appearing in the decay

process LLP→ V + I, facilitated by precision timing measurements.

2.2 Pair-production of non-identical LLPs (LLPa 6= LLPb)

The approach developed in the previous section can be extended to the pair-production of,

potentially non-identical LLPs, denoted as LLPa and LLPb. The energies and momenta of

the LLPs are represented by Ea, Eb and pa, pb respectively.

For pair-produced LLPs and their decay products, eq. (2.5) is now generalized as

pa,T + pb,T = pI,T + pVa,T + pVb,T

⇒ Eaβa,T + Ebβb,T = pI,T + pVa,T + pVb,T , (2.10)

where the total transverse momentum of the invisible particles is given by pI,T = pIa,T +

pIb,T . Using the two independent relations from the transverse vector constraint eq. (2.10),

the two unknown energies (Ea and Eb) can be analytically calculated as:

Ea =

[
βb × (pmiss

T + pVa + pVb) · k̂
βb × βa · k̂

]
, Eb =

[
βa × (pmiss

T + pVa + pVb) · k̂
βa × βb · k̂

]
, (2.11)

where k̂ is a unit vector pointing along the beam-line. A detailed derivation of this expres-

sion is contained in the appendix. With Ea and Eb calculated, the complete 4-momenta of

the long-lived and invisible particles are given by:

pa = (Ea, Ea βa), pb = (Eb, Eb βb), pIa = pa − pVa , pIb = pb − pVb , (2.12)

where βa,b is measured using timing information. We emphasize that this derivation is

completely generic, in that it can be applied to any system with the same event topology.

As these four-vectors are fully-determined, the masses of LLPs and invisible (dark matter)

particles can also be calculated; this is one of our main results in this paper.

One may wonder why the addition of timing information is sufficient to determine

these quantities of interest. The reason is counting the number of kinematic degrees of

freedom (d.o.f.) in the system gives 16 unknowns corresponding to the four 4-vectors of

the two LLPs and two invisible particles. Without timing information, the number of

measurable quantities and the conservation conditions are 4 + 4 + 2 + 2 + 2 = 14 where

the first two 4’s are from the two 4-momenta of visible particles, pVa,b , the next two 2’s

are from the direction of the displaced vertices, r̂a,b and the last two 2’s are from the total

transverse momentum of the invisible particles, pmiss
T . The timing information of the two

ToF’s provide the two additional constraints (in total 16 conditions) to fully-determine the

kinematics of the whole system.
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2.3 Production of two identical LLPs (LLPa = LLPb)

When the pair-produced LLPs are identical, and also with identical decay products, the

symmetry constraints on the system reduces the effective number of kinematic unknowns,

such that the kinematics of the system can be completely determined with 2-fold ambigu-

ities even in the absence of timing information.

This can be observed by first considering the relations following from 4-momentum

conservation in each branch of the decay processes (LLPi → Vi + Ii) for i = a or b,

respectively:

pIa = pa − pVa
⇒ m2

Ia = m2
a +m2

Va −
(

2EVa
√
m2
a + |pa|2 − 2pVa · pa

)
, (2.13)

pIb = pb − pVb

⇒ m2
Ib

= m2
b +m2

Vb
−
(

2EVb

√
m2
b + |pb|2 − 2pVb · pb

)
. (2.14)

Enforcing ma = mb = mLLP and mIa = mIb = mI according to assumptions of decay

symmetry, the two equations can be combined to yield a quadratic equation for ∆ ≡
m2

LLP −m2
I(> 0):

Aa∆
2 + 2Ba∆ + Ca = m2

LLP = Ab∆
2 + 2Bb∆ + Cb, (2.15)

∴ (Aa −Ab)∆2 + 2(Ba −Bb)∆ + (Ca − Cb) = 0, (2.16)

where the coefficients for i = a, b are all measurable and can be explicitly written as

Ai =
1

4E2
Vi

, Bi = Ai(m
2
Vi + 2pVi · pi), Ci =

B2
i

Ai
− |pi|2. (2.17)

For each event, all coefficients (A’s, B’s and C’s) can be calculated from measured

quantities, and ∆ can be correspondingly determined. Given that this is a quadratic

equation there will always be two solutions, this leads to the 2-fold ambiguity mentioned

earlier in this section. This method also does not guarantee that the solutions will be

real-valued, but this ambiguity can be resolved with the addition of timing information.

Therefore, the physical solution is chosen to satisfy the conditions mLLP > mV + mI

and mLLP > 0 and mI > 0. Knowledge of ∆, combined with eq. (2.15), is sufficient for

determining the LLP and invisible particle masses, which is also one of the results of this

paper.

2.4 Summary of reconstruction methods

The two equations eq. (2.13) and eq. (2.14) apply generally to the pair-production of LLPs,

irrespective of the availability of timing information, and define two independent algebraic

curves, Ca and Cb, on the two dimensional plane with the coordinates (mLLPi ,mIi) for

i = a or i = b. The point giving the true values of the masses, (mLLPi ,mIi), will lie on the

corresponding curve, Ci, but additional information is required to determine it.
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mLLPa mLLPb
mIa mIb pLLPa

pLLPb
pIa pIb

Identical LLPs w/o timing 4 4 4 4 © © © ©
timing © © © © © © © ©

Non-identical LLPs w/o timing × × × × © © © ©
timing © © © © © © © ©

Table 1. Summary of reconstruction scenarios. The mark © (×) indicates whether the system

can (cannot) be reconstructed. The triangle (4) indicates that the system can be reconstructed

but with 2-fold ambiguities.

Two completely solvable scenarios have been described:

• Pair-production of identical LLPs (LLPa = LLPb and Ib = Ia)

• Pair-production of non-identical LLPs, using timing (LLPa 6= LLPb and Ia 6= Ib)

For the special case with mLLPa = mLLPb
and mIa = mIb the point of intersection of two

curves corresponds to the true solution, and can be calculated without timing information.

We denote this displaced vertex based reconstruction without timing information simply

“w/o timing reconstruction”. A method to reconstruct the 3-momenta of LLP’s and in-

visible particles without timing information has also been developed, with details provided

in the appendix. When timing information is available, assumptions about similarities

between the LLPs and invisible particles appearing in the two decays can be relaxed, with

the associated measurement of event kinematics denoted “timing reconstruction”. Each of

the relevant scenarios are summarized in table 1.

3 Reconstruction performance in simulated events

We present two case studies of these LLP reconstruction techniques in scenarios with the

pair-production of neutral LLPs independently decaying to visible and invisible particles.

The corresponding event topology is illustrated in figure 2. Such a scenario appears in

many BSM models, such as gluino decay in GMSB SUSY, slepton decay, gluball decay

in hidden sector models and many others [17–22]. In general, requirements on the LLP

displacements being experimentally significant in both space and time will remove nearly

all SM background contributions to this final state. The characterization and evaluation of

remaining background sources is left for future studies, with this paper focusing exclusively

on signal events.

The first case study compares the performance of the “w/o timing reconstruction” and

“timing reconstruction” methods in a generic scenario of LLP pair production and decays,

with and without identical LLPs. We further explore the “timing reconstruction” approach

in a second case study, evaluating the precision of measured masses as a function of LLP

lifetimes, particle masses, and timing detector resolution.
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Figure 2. Typical event topology for the LLP pair-production with decays to visible and invisible

particles.

3.1 Comparison of reconstruction methods

To compare the “w/o timing reconstruction” and “timing reconstruction” reconstruction

methods, simulated signal events are evaluated using a toy representation of an HL-LHC

detector. Here, generator-level 4-vectors are smeared according to a simple model of a

detector, with the momentum resolution of visible and invisible particles taken to be 2%.

The experimental resolutions of LLP displacements in space and time are assumed to

have resolutions of 12µm and 30 ps, respectively [23]. These resolutions are applied as a

Gaussian smearing to the relevant quantities. Events are generated using MG5aMC [24], with

particle decays simulated using Pythia8 [25–27].

3.1.1 LLPa = LLPb and Ia = Ib

We first consider a scenario with identical LLPs and decays, choosing mLLP = 400 GeV

and mInv = 200 GeV, with a LLP lifetime of cτ ≈ O(100) mm. Using both reconstruction

methods, the masses MLLP and MInv can be evaluated. Of note in this analysis is the

absence of significant combinatoric ambiguities as the two distinguishable displaced vertices

are independently identified and measured.

Assuming symmetry of the LLP decays, the reconstructed LLP and invisible particle

mass distributions calculated using the “w/o timing reconstruction” method are shown in

the figure 3. Clean peaks are observed in the distributions of MLLP and MInv at the true

values.

Appealing to additional timing information from the reconstructed vertices in these

events, the masses MLLPa and MLLPb
can be calculated in the same simulated events with-

out a priori assumptions about LLP and invisible particle mass relations, with the results

shown in figure 3. The clear peaks near the true MLLP and MInv values are prominently

seen for each decay chain independently.
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mLLPa mLLPb
mIa mIb εreco

a = b w/o timing 397.6±1.2 397.6±1.2 206.0±1.5 206.0±1.5 0.86

timing 400.91±0.35 400.91±0.35 201.53±0.49 201.53±0.49 0.72

a 6= b w/o timing — — — — —

timing 305.76±0.51 607.3±1.1 115.2±1.1 311.0±1.7 0.51

Table 2. Reconstructed masses and reconstruction efficiencies for the identical LLPs case (a = b)

and the non-identical LLPs case (a 6= b). The masses are obtained from the pole mass of a Breit-

Wigner probability distribution function for (a = b), and a Crystal Ball probability distribution

function is used for (a 6= b). The uncertainties are smaller than what would typically be seen on

an experiment due to not incorporating the effects of backgrounds, the use of a fast simulation and

other related effects.

3.1.2 LLPa 6= LLPb and Ia 6= Ib

The two mass reconstruction approaches are also compared in a scenario with non-identical

LLP decays, choosing MLLPa = 300 GeV, MLLPb
= 600 GeV, MInva = 100 GeV, and

MInvb = 300 GeV, with cτ ≈ O(100) mm.

Masses calculated using both methods are shown in figure 4. In this scenario, the

assumption of symmetry between the LLP decays used in the “w/o timing reconstruction”

approach is violated, resulting in an incorrect determination of the masses. While the LLP

and invisible particle masses can be determined independently for each decay, a strong

correlation is observed between the measured masses in each decay. This behavior is

further explored in section 3.2.

The masses “measured” from the simulated event distributions using both reconstruc-

tion methods are summarized in table 2. Included in the table are the reconstruction

efficiencies εreco = Nreco/Ngen, corresponding to events with only complex (unphysical)

solutions to the kinematic constraints due to imperfect detector resolution and, in the case

of “w/o timing reconstruction”, incorrect assumptions. We observe that these methods can

successfully infer the masses of LLPs and invisible (dark matter) particles at the HL-LHC.

3.2 Timing reconstruction of neutral LLP decays

In order to evaluate how the precision of timing-assisted LLP decay reconstruction depends

on the lifetimes and masses of particles appearing in these decays we consider a SUSY

scenario with long-lived neutralinos, (χ̃0
2). We assume that these LLPs are pair-produced

in events, each decaying to an invisible lightest neutralino (χ̃0
1), and a (possibly off-shell)

Z boson, which in turn decays to leptons. The decays in this process are illustrated in

figure 5.

To permit fast event simulation for varying masses and lifetimes, a two-step proce-

dure is employed, whereby the kinematics of the di-LLP system is first modeled using

MG5aMC [24], including the simulation of up to two associated partons for this process for

χ̃0
2 masses between 200 GeV and 1 TeV. The hadronization and decays of these events is

then simulated with Pythia8 [25–27] (assuming zero LLP lifetime) and reconstructed using
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Figure 3. Mass reconstruction without timing information (top) and with timing information

(bottom) for MLLPa
= MLLPb

= 400 GeV, MInva
= MInvb

= 200 GeV. (Left) LLP mass reconstruc-

tion; (Center) Invisible particle mass reconstruction. Red and blue color indicate each decay chain;

(Right) Invisible mass vs. LLP mass distributions. All histograms were filled with 10k events unless

otherwise noted.
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2), each decaying
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1). (Right) Distribution of the energy of the Z evaluated in the LLP rest

frame for different LSP masses, assuming an LLP mass of 400 GeV.

an emulation of the CMS HL-LHC detector in Delphes [28] with 200 pile-up interactions.

These reconstructed events are used to develop a fast, parameterized model of the detec-

tor resolution for reconstructing lepton momentum and missing transverse energy. For

the latter, particular care was taken to model the missing transverse energy resolution

separately for the components parallel and perpendicular to the true missing momentum,

respectively, while capturing correlations with the kinematics of the di-LLP system. In

this model, typical missing transverse energy resolutions fall in the range 15 to 45 GeV.

Using the Madgraph-based model of the di-LLP system kinematics and fast HL-LHC

detector-response parameterization, the remaining decays and kinematics of these events

are simulated using the RestFrames [16] package, including simulation of displaced LLP

decays. Only events with leptons falling within the acceptance of typical LHC analyses

(represented by the cuts pT > 10 GeV and |η| < 2.5) are considered. Experimental uncer-

tainties in the spatial and time components of reconstructed vertices are included, with a

30 ps time resolution for individual charged particles assumed unless otherwise noted. This

is far in excess of the corresponding spatial vertex uncertainties, which were modeled as

normally-distributed deviations around the true vertex location in three dimensions, with

a standard deviation of 100µm in each [29]. Correlations between event kinematics and

the precision of vertex reconstruction are neglected, and are expected to have a negligible

effect on the behavior of the observables presented in this work.

As described by eq. (2.2), the measured LLP velocities can each be used to evaluate

the energy of the visible systems (here corresponding to the reconstructed Z bosons) in

their respective LLP rest frames, a quantity sensitive to the LLP and LSP masses in these

events. Distributions of this reconstructed variable are shown in figure 5, with narrow

peaks at the combination of true LLP and LSP masses described by eq. (2.3). While such

an observable results in a striking signature for these LLP signals, it is sensitive to the

mass difference between the LLP and LSP in these decays rather than absolute masses.

This ambiguity can be resolved by incorporating the measured missing transverse energy

in the “with timing” reconstruction method introduced in this paper.
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3.2.1 Mass reconstruction performance

The distributions of reconstructed LLP and LSP masses for pair-production of 400 GeV

long-lived χ̃0
2’s are shown in figure 6. The mode for each of these reconstructed mass dis-

tributions corresponds closely to the true value, with resolution degrading with decreasing

LLP lifetime. This effect of the lifetime on the mass resolution can also be seen in figure 7,

where the full-width-half-maximum (FWHM) of the reconstructed mass distributions is

evaluated as an estimator of the resolution of these distributions. In general, these res-

olutions are worse relative to the visible energy observable shown in figure 5 due to the

dependence of calculated absolute masses on reconstructed missing transverse momentum.

Masses of the LLP and LSP are calculated independently for each separate LLP decay,

with the resulting mass estimators largely uncorrelated between each half of the event, as
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Figure 8. (Left) Distribution of reconstructed LSP mass vs. LLP mass, for separate decays in
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Distribution of reconstructed LSP and LLP mass ratio, for different LSP masses. An LLP mass

of 400 GeV, LSP mass of 350 GeV, and lifetime of 20 cm is assumed when simulating these events

unless otherwise noted.

can be seen in figure 8 when looking at the distribution of the reconstructed LSP mass vs.

LLP mass for separate decays. When looking at the same distribution for masses in the

same decay, we observe that the calculated LLP and LSP masses are strongly correlated.

As shown in figure 8 (right), the ratio of reconstructed LSP and LLP masses for a single

decay, is well-resolved, and is largely independent of the individual absolute masses.

The FWHM of the reconstructed LLP and LSP mass distributions is again evaluated

as an estimator of the resolution of these distributions, and shown as a function of tim-

ing detector resolution in figure 9. For the LLP mass, experimental contributions to the

mass resolution are isolated by disengaging different detector emulation effects. We ob-

serve that imperfect timing resolution and missing transverse energy reconstruction are

by-far the dominant contributions to mass resolution, with spatial vertex resolution and

lepton momentum reconstruction negligible in comparison, as shown by the magenta curve

in figure 9. Coincidentally, the contributions from timing and missing transverse energy

reconstruction to mass resolution have a similar magnitude for a time resolution corre-

sponding to the proposed HL-LHC timing detectors.

In the case of the reconstructed LSP mass, its resolution scales similarly to that of the

LLP mass, with the addition of a factor approximately equal to the ratio of LLP and LSP

masses, mLLP/mLSP. This results in the LSP mass resolution performing best in cases of

increasingly compressed mass spectra, as seen in figure 9. Such compressed mass spectra

appear naturally in many BSM scenarios, often as a reason for the long-lived nature of the

decays. This makes this reconstruction approach for measuring invisible particle masses

a precise tool for studying this otherwise difficult kinematic regime, where observables

sensitive to mass-splittings can struggle to distinctively isolate signals.

3.2.2 Total event reconstruction

While new particle masses are generally the observables of focus in searches for new par-

ticles, the proposed method of timing-assisted neutral LLP reconstruction allows for the

kinematics of LLP decays to be reconstructed in their entirety, with other interesting vari-

ables available. One such observable is the decay angle of the LLP, defined as the angle
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Figure 9. The full-width-half-maximum (FWHM) of reconstructed mass distributions as a function

of timing detector single-track resolution. (Left) Width of the LLP mass distribution accounting for

combinations of different experimental uncertainties. (Right) Width of the LSP mass distribution

for different LLP/LSP mass splittings. An LLP mass of 400 GeV and lifetime of 20 cm is assumed
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Figure 10. Distribution of the difference between the true and reconstructed LLP decay angle for

different neutralino lifetimes.

between the visible system momentum and boost direction in the LLP rest frame, which is

sensitive to the LLP spin and quantum numbers. The distribution of this angle, compared

to the true value it is estimating, is shown in figure 10, where we observe that it is recon-

structed with excellent resolution. Similarly, variables sensitive to the production mode of

the LLPs can also be calculated.

The LLP decay angle is not only an interesting observable in what it could tell us about

new physics, but also for practical reasons related to experimental effects in reconstruction.

In figure 11 we observe that deviations of the reconstructed decay angle from the true value

are correlated with the cosine of that angle, such that the worst resolution corresponds to

reconstructed values of cos θLLP near −1 and 1. This behavior can be understood by
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Figure 11. (Left) Cosine of the LLP decay angle as a function of reconstructed decay angle error.

(Right) Cosine of the LLP decay angle as a function of reconstructed LLP mass. An LLP mass of

400 GeV is assumed when simulating these events.

considering the explicit formulation of this decay angle: when the LLP velocity is mis-

measured due to imperfect timing resolution, the magnitude of the boost from the lab

frame to the LLP rest frame is either over- or under-estimated. This induces an artificial

correlation between the accuracy of the velocity measurement (boost magnitude) and the

angle between the visible system momentum and boost direction (decay angle), as over-

and under-boosts will preferentially align these axes.

The practical consequence of this observation is that events with reconstructed values

of cos θLLP near −1 and 1 are more likely to be poorly measured. This can be seen

by looking at the correlation between cos θLLP and the reconstructed LLP mass, shown in

figure 11. The largest deviations from the true LLP mass, 400 GeV in this case, occur when

| cos θLLP| ∼ 1. The resolution of calculated masses and other observables can effectively

be improved (at some cost in efficiency) by selectively removing events that are more likely

to be poorly measured, without any prior knowledge of the true values of any new particle

masses.

4 Conclusion

The precision timing detectors proposed by the CMS and ATLAS experiments at the HL-

LHC have the potential to open an entirely new experimental window to the kinematics

of new, long-lived particles. In particular, for the long lived particle (LLP) decaying to a

invisible particle (i.e. dark matter) and a visible particle (i.e. the standard model particle(s))

the addition of timing information allows us to completely determine the masses of the LLP

as well as the dark matter particle, information that is otherwise inaccessible. In this paper,

we have developed two novel reconstruction methods: (i) the first based on the precision

displaced vertex measurement and applicable when the pair produced LLPs are identical

and each of the LLP decays to the same dark matter particle. (ii) the second relying on

the timing information of the long lived particle(s) and generally applicable to cases of
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two different LLPs decaying to different invisible particles. Evaluation of the expected

performance of timing reconstruction of LLP kinematics indicates that this approach can

accurately reconstruct the masses and kinematics of all the particles appearing in these

events, invisible and long-lived, for a wide class of lifetimes and masses at the HL-LHC.
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A Determination of 3 momenta with displaced vertices

In this section, we will show that we can determine the 3-momenta of LLPs (but not

the energies or equivalently masses of LLPs) even without timing information under the

following conditions:

• Assumption-1 : we measure the displaced vertex of the LLP,

• Assumption-2 : MET is only from Ia and Ib,

• Assumption-3 : we fully reconstruct the 3-momentum of V (with the known mass,mV ).

Proof. We notice that the energy of LLPa in lab frame is found to be related with 3-

velocities, βa and βb as eq. (2.11). Let us derive this relation first, eq. (2.10) We can find

the energy by cross producting βi,T and dot producting to the beam axis k̂.

Ea =

[
βb,T × (pI,T + pVa,T + pVb,T ) · k̂

βb,T × β̂a,T · k̂

]

=

[
βb × (pmiss

T + pVa + pVb) · k̂
βb × βa · k̂

]
, (A.1)

Eb =

[
βa × (pmiss

T + pVa + pVb) · k̂
βa × βb · k̂

]
. (A.2)

In the second line we have used the Assumption-2 and the vector identity, k̂×~V ·k̂ = 0 for an

arbitrary vector ~V after decomposing the vectors into longitudinal (∝ k̂) and perpendicular

components.
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As the momentum is related with the energy by the relation pa = Eaβa, the 3-momenta

of LLPa and similarly to the LLPb are obtained as

pa =

[
βb × (pmiss

T + pVa + pVb) · k̂
βb × βa · k̂

]
βa (A.3)

pb =

[
βa × (pmiss

T + pVa + pVb) · k̂
βa × βb · k̂

]
βb . (A.4)

The above relations are independent of the magnitude of the velocity vectors βa and

βb but dependent only on the direction vectors of them,

r̂a = βa/|βa|, r̂b = βb/|βb|, (A.5)

thus

pa =

(
rb × (pmiss

T + pVa + pVb) · k̂
rb × ra · k̂

)
ra, (A.6)

pb =

(
ra × (pmiss

T + pVa + pVb) · k̂
ra × rb · k̂

)
rb. (A.7)

This completes the proof.
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