2,019 research outputs found

    The impact of the dynamical state of galaxy groups on the stellar populations of central galaxies

    Get PDF
    We study the stellar populations of the brightest group galaxies (BGGs) in groups with different dynamical states, using Galaxy And Mass Assembly survey data. We use two independent, luminosity-dependent indicators to probe the relaxedness of their groups: the magnitude gap between the two most luminous galaxies (ΔM 12), and the offset between BGGs and the luminosity center (D offset) of the group. Combined, these two indicators were previously found useful for identifying relaxed and unrelaxed groups. We find that the BGGs of unrelaxed groups have significantly bluer near-ultraviolet-r colors than in relaxed groups. This is also true at the fixed sersic index. We find the bluer colors cannot be explained away by differing dust fraction, suggesting there are real differences in their stellar populations. Star formation rates derived from spectral energy distribution (SED) fitting tend to be higher in unrelaxed systems. This is in part because of a greater fraction of BGGs with non-elliptical morphology, but also because unrelaxed systems have larger numbers of mergers, some of which may bring fuel for star formation. The SED-fitted stellar metallicities of BGGs in unrelaxed systems also tend to be higher by around 0.05 dex, perhaps because their building blocks were more massive. We find that the ΔM 12 parameter is the most important parameter behind the observed differences in the relaxed/unrelaxed groups, in contrast with the previous study of Trevisan et al. We also find that groups selected to be unrelaxed using our criteria tend to have higher velocity offsets between the BGG and their group.Publisher PDFPeer reviewe

    Time-delayed Spatial Patterns in a Two-dimensional Array of Coupled Oscillators

    Full text link
    We investigated the effect of time delays on phase configurations in a set of two-dimensional coupled phase oscillators. Each oscillator is allowed to interact with its neighbors located within a finite radius, which serves as a control parameter in this study. It is found that distance-dependent time-delays induce various patterns including traveling rolls, square-like and rhombus-like patterns, spirals, and targets. We analyzed the stability boundaries of the emerging patterns and briefly pointed out the possible empirical implications of such time-delayed patterns.Comment: 5 Figure

    Comparison of spatial distributions of Intracluster light and Dark Matter

    Full text link
    In a galaxy cluster, the relative spatial distributions of dark matter, member galaxies, gas, and intracluster light (ICL) may connote their mutual interactions over the cluster evolution. However, it is a challenging problem to provide a quantitative measure for the shape matching between two multi-dimensional scalar distributions. We present a novel methodology, named the {\em Weighted Overlap Coefficient (WOC)}, to quantify the similarity of 2-dimensional spatial distributions. We compare the WOC with a standard method known as the Modified Hausdorff Distance (MHD). We find that our method is robust, and performs well even with the existence of multiple sub-structures. We apply our methodology to search for a visible component whose spatial distribution resembled with that of dark matter. If such a component could be found to trace the dark matter distribution with high fidelity for more relaxed galaxy clusters, then the similarity of the distributions could also be used as a dynamical stage estimator of the cluster. We apply the method to six galaxy clusters at different dynamical stages simulated within the GRT simulation, which is an N-body simulation using the galaxy replacement technique. Among the various components (stellar particles, galaxies, ICL), the ICL+ brightest cluster galaxy (BCG) component most faithfully trace the dark matter distribution. Among the sample galaxy clusters, the relaxed clusters show stronger similarity in the spatial distribution of the dark matter and ICL+BCG than the dynamically young clusters. While the MHD results show weaker trend with the dynamical stages.Comment: 17 pages, 8 figures, accepted in ApJ

    SHELS: Optical Spectral Properties of WISE 22 \mu m-selected Galaxies

    Full text link
    We use a dense, complete redshift survey, the Smithsonian Hectospec Lensing Survey (SHELS), covering a 4 square degree region of a deep imaging survey, the Deep Lens Survey (DLS), to study the optical spectral properties of Wide-field Infrared Survey Explorer (WISE) 22 \mu m-selected galaxies. Among 507 WISE 22 \mu m-selected sources with (S/N)_{22\mu m}>3 (\simS_{22\mu m}>2.5 mJy), we identify the optical counterparts of 481 sources (\sim98%) at R<25.2 in the very deep, DLS R-band source catalog. Among them, 337 galaxies at R<21 have SHELS spectroscopic data. Most of these objects are at z<0.8. The infrared (IR) luminosities are in the range 4.5x10^8 (L_sun) < L_{IR} < 5.4x10^{12} (L_sun). Most 22 \mu m-selected galaxies are dusty star-forming galaxies with a small (<1.5) 4000 \AA break. The stacked spectra of the 22 \mu m-selected galaxies binned in IR luminosity show that the strength of the [O III] line relative to H\beta grows with increasing IR luminosity. The optical spectra of the 22 \mu m-selected galaxies also show that there are some (\sim2.8%) unusual galaxies with very strong [Ne III] \lambda 3869, 3968 emission lines that require hard ionizing radiation such as AGN or extremely young massive stars. The specific star formation rates (sSFRs) derived from the 3.6 and 22 \mu m flux densities are enhanced if the 22 \mu m-selected galaxies have close late-type neighbors. The sSFR distribution of the 22 \mu m-selected galaxies containing active galactic nuclei (AGNs) is similar to the distribution for star-forming galaxies without AGNs. We identify 48 dust-obscured galaxy (DOG) candidates with large (\gtrsim1000) mid-IR to optical flux density ratio. The combination of deep photometric and spectroscopic data with WISE data suggests that WISE can probe the universe to z\sim2.Comment: 18 pages, 17 figures. To appear in Ap

    Catheter-associated bacteremia by Mycobacterium senegalense in Korea

    Get PDF
    BACKGROUND: Rapidly growing mycobacteria is recognized as one of the causative agents of catheter-related infections, especially in immunocompromised hosts. To date, however, Mycobacterium senegalense, which was known as the principal pathogen of bovine farcy, has not been reported in human infection. CASE PRESENTATION: We describe the first case of human infection by M. senegalense, which has caused catheter-related bloodstream infection in a cancer patient in Korea. The microorganism was identified by the 16S rRNA gene, rpoB, and 16S-23S rRNA gene internal transcribed spacer (ITS) sequence analyses. CONCLUSION: Our first report of catheter-associated bacteremia caused by M. senegalense suggests the zoonotic nature of this species and indicates the expansion of mycobacterial species relating to human infection. M. senegalense should be considered as one of the causes of human infections in the clinical practice

    Angular analysis of B0K(892)0+B^0 \to K^\ast(892)^0 \ell^+ \ell^-

    Full text link
    We present a measurement of angular observables, P4P_4', P5P_5', P6P_6', P8P_8', in the decay B0K(892)0+B^0 \to K^\ast(892)^0 \ell^+ \ell^-, where +\ell^+\ell^- is either e+ee^+e^- or μ+μ\mu^+\mu^-. The analysis is performed on a data sample corresponding to an integrated luminosity of 711 fb1711~\mathrm{fb}^{-1} containing 772×106772\times 10^{6} BBˉB\bar B pairs, collected at the Υ(4S)\Upsilon(4S) resonance with the Belle detector at the asymmetric-energy e+ee^+e^- collider KEKB. Four angular observables, P4,5,6,8P_{4,5,6,8}' are extracted in five bins of the invariant mass squared of the lepton system, q2q^2. We compare our results for P4,5,6,8P_{4,5,6,8}' with Standard Model predictions including the q2q^2 region in which the LHCb collaboration reported the so-called P5P_5' anomaly.Comment: Conference paper for LHC Ski 2016. SM prediction for P6P_{6}' corrected and reference for arXiv:1207.2753 adde

    Deletion of the Huntingtin Polyglutamine Stretch Enhances Neuronal Autophagy and Longevity in Mice

    Get PDF
    Expansion of a stretch of polyglutamine in huntingtin (htt), the protein product of the IT15 gene, causes Huntington's disease (HD). Previous investigations into the role of the polyglutamine stretch (polyQ) in htt function have suggested that its length may modulate a normal htt function involved in regulating energy homeostasis. Here we show that expression of full-length htt lacking its polyglutamine stretch (ΔQ-htt) in a knockin mouse model for HD (Hdh140Q/ΔQ), reduces significantly neuropil mutant htt aggregates, ameliorates motor/behavioral deficits, and extends lifespan in comparison to the HD model mice (Hdh140Q/+). The rescue of HD model phenotypes is accompanied by the normalization of lipofuscin levels in the brain and an increase in the steady-state levels of the mammalian autophagy marker microtubule-associate protein 1 light chain 3-II (LC3-II). We also find that ΔQ-htt expression in vitro increases autophagosome synthesis and stimulates the Atg5-dependent clearance of truncated N-terminal htt aggregates. ΔQ-htt's effect on autophagy most likely represents a gain-of-function, as overexpression of full-length wild-type htt in vitro does not increase autophagosome synthesis. Moreover, HdhΔQ/ΔQ mice live significantly longer than wild-type mice, suggesting that autophagy upregulation may be beneficial both in diseases caused by toxic intracellular aggregate-prone proteins and also as a lifespan extender in normal mammals
    corecore