1,661 research outputs found

    FEASIBILITY OF BREWING MAKGEOLLI (TURBID RICE WINE) USING PARTIALLY GELATINIZED WHEAT FLOUR AND TAPIOCA FLOUR

    Get PDF
    Makgeolli is made from cooked rice or wheat, then brewed with nuruk (Korean fermentation starter) for several days. But, nowadays, attempts have been made to use various raw materials and process innovations to make makgeolli for particular purposes.  This study aimed to evaluate the quality of makgeolly made from partially gelatinized wheat flour and tapioca flour. Five different combination of wheat flour and tapioca flour were used to manufacture makgeolli. The results showed that different combination of partially gelatinized wheat flour and tapioca flour significantly affected the chemical and sensorial characteristics of makgeolli. Increasing proportion of wheat flour produced higher level of total acid, amino acidity, reducing sugar and total solid of makgeolli. Inversely, alcohol content was higher when higher level of tapioca flour was used. In general, sensorial characteristics of makgeolli made from partially gelatinized wheat flour and tapioca flour didn’t acceptable by panelists. Thus, brewing makgeolli by using partially gelatinized wheat flour and tapioca flour isn’t acceptable in term of sensorial characteristics

    Benthic invertebrate fauna in the islets of Namuseom and Bukhyeongjeseom off Busan

    Get PDF
    AbstractThis study was conducted to examine the benthic invertebrate fauna inhabiting in the subtidal zone in and around the islets of Namuseom and Bukhyeongjeseom off the coast of Busan by SCUBA diving in September 2013. As a consequence, it was confirmed that a total of 6 phyla, 14 classes, 20 orders, 46 families, and 73 species of zoobenthos inhabit in and around those islets. The total number of species surveyed by taxon during the study is 22 species of Arthropoda (30%), 20 species of Mollusca (27%), 15 species of Cnidaria (21%), 10 species of Echinodermata (14%), four species of Poridera (5%), and two species of Chordata

    High-efficiency Bidirectional Buck-Boost Converter for Residential Energy Storage System

    Get PDF
    This paper proposes a bidirectional dc-dc converter for residential micro-grid applications. The proposed converter can operate over an input voltage range that overlaps the output voltage range. This converter uses two snubber capacitors to reduce the switch turn-off losses, a dc-blocking capacitor to reduce the input/output filter size, and a 1:1 transformer to reduce core loss. The windings of the transformer are connected in parallel and in reverse-coupled configuration to suppress magnetic flux swing in the core. Zero-voltage turn-on of the switch is achieved by operating the converter in discontinuous conduction mode. The experimental converter was designed to operate at a switching frequency of 40-210 kHz, an input voltage of 48 V, an output voltage of 36-60 V, and an output power of 50-500 W. The power conversion efficiency for boost conversion to 60 V was >= 98.3% in the entire power range. The efficiency for buck conversion to 36 V was >= 98.4% in the entire power range. The output voltage ripple at full load was <3.59 V-p.p for boost conversion (60 V) and 1.35 V-p.p for buck conversion (36 V) with the reduced input/output filter. The experimental results indicate that the proposed converter is well-suited to smart-grid energy storage systems that require high efficiency, small size, and overlapping input and output voltage ranges.11Ysciescopu

    Computational Synthesis of Wearable Robot Mechanisms: Application to Hip-Joint Mechanisms

    Full text link
    Since wearable linkage mechanisms could control the moment transmission from actuator(s) to wearers, they can help ensure that even low-cost wearable systems provide advanced functionality tailored to users' needs. For example, if a hip mechanism transforms an input torque into a spatially-varying moment, a wearer can get effective assistance both in the sagittal and frontal planes during walking, even with an affordable single-actuator system. However, due to the combinatorial nature of the linkage mechanism design space, the topologies of such nonlinear-moment-generating mechanisms are challenging to determine, even with significant computational resources and numerical data. Furthermore, on-premise production development and interactive design are nearly impossible in conventional synthesis approaches. Here, we propose an innovative autonomous computational approach for synthesizing such wearable robot mechanisms, eliminating the need for exhaustive searches or numerous data sets. Our method transforms the synthesis problem into a gradient-based optimization problem with sophisticated objective and constraint functions while ensuring the desired degree of freedom, range of motion, and force transmission characteristics. To generate arbitrary mechanism topologies and dimensions, we employed a unified ground model. By applying the proposed method for the design of hip joint mechanisms, the topologies and dimensions of non-series-type hip joint mechanisms were obtained. Biomechanical simulations validated its multi-moment assistance capability, and its wearability was verified via prototype fabrication. The proposed design strategy can open a new way to design various wearable robot mechanisms, such as shoulders, knees, and ankles.Comment: 28 pages, 7 figures, Supplementary Material

    The Association between Apolipoprotein A-II and Metabolic Syndrome in Korean Adults: A Comparison Study of Apolipoprotein A-I and Apolipoprotein B

    Get PDF
    BackgroundApolipoprotein A-II (apoA-II) is the second-most abundant apolipoprotein in human high-density lipoprotein and its role in cardio metabolic risk is not entirely clear. It has been suggested to have poor anti-atherogenic or even pro-atherogenic properties, but there are few studies on the possible role of apoA-II in Asian populations. The aim of this study is to evaluate the role of apoA-II in metabolic syndrome (MetS) compared with apolipoprotein A-I (apoA-I) and apolipoprotein B (apoB) in Korean adults.MethodsWe analyzed data from 244 adults who visited the Center for Health Promotion in Pusan National University Yangsan Hospital for routine health examinations.ResultsThe mean apoB level was significantly higher, and the mean apoA-I level was significantly lower, in MetS; however, there was no significant difference in apoA-II levels (30.5±4.6 mg/dL vs. 31.2±4.6 mg/dL, P=0.261). ApoA-II levels were more positively correlated with apoA-I levels than apoB levels. ApoA-II levels were less negatively correlated with homocysteine and high sensitivity C-reactive protein levels than apoA-I levels. The differences in MetS prevalence from the lowest to highest quartile of apoA-II were not significant (9.0%, 5.7%, 4.9%, and 6.6%, P=0.279). The relative risk of the highest quartile of apoA-II compared with the lowest quartile also was not significantly different (odds ratio, 0.96; 95% confidence interval, 0.95 to 1.04; P=0.956).ConclusionCompared with apoA-I (negative association with MetS) and apoB (positive association with MetS) levels, apoA-II levels did not show any association with MetS in this study involving Korean adults. However, apoA-II may have both anti-atherogenic and pro-atherogenic properties

    Evaluation of a Sodium–Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

    Get PDF
    AbstractThe prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant

    Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin film

    Full text link
    Transition metal oxide thin films show versatile electrical, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of the magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO3 thin films using pulsed laser epitaxy. Using epitaxial stabilization technique with atomically flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin film with crystalline quality of each grain comparable to that of single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.Comment: 24 pages, 5 figure
    corecore