131 research outputs found

    Experimental study on the effect of initial liquid droplet size on the evaporation in a heterogeneous droplet

    Full text link
    [EN] In the present work, we experimentally investigated the effect of initial liquid droplet size on the evaporation in the heterogeneous droplet. Spherical carbon and water were used for particle and liquid droplet comprising the heterogeneous droplet. four initial droplet volumes of 1, 2, 3 and 4 μl were considered when the diameter of the particle was 5 mm. The heterogeneous droplet was suspended with a rod at 20 cm away from the radiator which surface temperature was fixed to 473 K. Ambient temperature and relative humidity remained 296 K and 40 %, respectively, during the experiment. As the results, the evaporation rate of 4 μl case increased about 1.8 times compared with that of 1 μl case. The evaporation rate increased almost linearly with the volume ratio, and that is related closely with the contact surface between particle and water droplet. Contact surface area remained almost constantly with time, whereas it increased with the initial volume of water droplet. The energy from radiator can be accumulated at the contact surface at the side of particle, thereby intensifying the evaporation of water droplet because more heat transfers from particle to droplet through the contact surface. Consequently, the initial volume of liquid droplet is one of the influence factors on the evaporation rate in the heterogenous droplet.This research was supported by the Fire Fighting Safety & 119 Rescue Technology Research and Development Program funded by the Ministry of Public Safety and Security (NEMA-NG-2014-46) and Research Project of Air Sampling Detector funded by Alllitelife co. Inc..Sung, KH.; Nam, JS.; Hong, GB.; Ryou, HS. (2017). Experimental study on the effect of initial liquid droplet size on the evaporation in a heterogeneous droplet. En Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems. Editorial Universitat Politècnica de València. 290-295. https://doi.org/10.4995/ILASS2017.2017.4744OCS29029

    Risk stratification of symptomatic brain metastases by clinical and FDG PET parameters for selective use of prophylactic cranial irradiation in patients with extensive disease of small cell lung cancer

    Get PDF
    Purpose: To identify risk factors for developing symptomatic brain metastases and evaluate the impact of prophylactic cranial irradiation (PCI) on brain metastasis-free survival (BMFS) and overall survival (OS) in extensive disease small cell lung cancer (ED-SCLC). Materials and methods: Among 190 patients diagnosed with ED-SCLC who underwent FDG PET/CT and brain Magnetic Resonance Imaging (MRI) prior to treatment, 53 (27.9%) received PCI while 137 (72.1%) did not. Prognostic index predicting a high risk of symptomatic brain metastases was calculated for the group without receiving PCI (observation group, n = 137) with Cox regression model. Results: Median follow-up time was 10.6 months. Multivariate Cox regression showed that the following three factors were associated with a high risk of symptomatic brain metastases: the presence of extrathoracic metastases (p = 0.004), hypermetabolism of bone marrow or spleen on FDG PET (p < 0.001), and high neutrophil-to-lymphocyte ratio (p = 0.018). PCI significantly improved BMFS in high-risk patients (1-year rate: 94.7% vs. 62.1%, p = 0.001), but not in low-risk patients (1-year rate: 100.0% vs. 87.7%, p = 0.943). However, PCI did not improve OS in patients at high risk for symptomatic brain metastases (1-year rate: 65.2% vs. 50.0%, p = 0.123). Conclusion: Three prognostic factors (the presence of extrathoracic metastases, hypermetabolism of bone marrow or spleen on FDG PET, and high neutrophil-to-lymphocyte ratio) were associated with a high risk of symptomatic brain metastases in ED-SCLC. PCI was beneficial for patients at a high risk of symptomatic brain metastases in terms of BMFS, but not OS. Thus, selective use of PCI in ED-SCLC according to the risk stratification is recommended. (C) 2020 Elsevier B.V. All rights reserved.

    Classification of rice (oryza sativa l. japonica nipponbare) immunophilins (fkbps, cyps) and expression patterns under water stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FK506 binding proteins (FKBPs) and cyclophilins (CYPs) are abundant and ubiquitous proteins belonging to the peptidyl-prolyl <it>cis/trans </it>isomerase (PPIase) superfamily, which regulate much of metabolism through a chaperone or an isomerization of proline residues during protein folding. They are collectively referred to as immunophilin (IMM), being present in almost all cellular organs. In particular, a number of IMMs relate to environmental stresses.</p> <p>Results</p> <p>FKBP and CYP proteins in rice (<it>Oryza sativa </it>cv. Japonica) were identified and classified, and given the appropriate name for each IMM, considering the ortholog-relation with <it>Arabidopsis </it>and <it>Chlamydomonas </it>or molecular weight of the proteins. 29 FKBP and 27 CYP genes can putatively be identified in rice; among them, a number of genes can be putatively classified as orthologs of <it>Arabidopsis </it>IMMs. However, some genes were novel, did not match with those of <it>Arabidopsis </it>and <it>Chlamydomonas</it>, and several genes were paralogs by genetic duplication. Among 56 IMMs in rice, a significant number are regulated by salt and/or desiccation stress. In addition, their expression levels responding to the water-stress have been analyzed in different tissues, and some subcellular IMMs located by means of tagging with GFP protein.</p> <p>Conclusion</p> <p>Like other green photosynthetic organisms such as <it>Arabidopsis </it>(23 FKBPs and 29 CYPs) and <it>Chlamydomonas </it>(23 FKBs and 26 CYNs), rice has the highest number of IMM genes among organisms reported so far, suggesting that the numbers relate closely to photosynthesis. Classification of the putative FKBPs and CYPs in rice provides the information about their evolutional/functional significance when comparisons are drawn with the relatively well studied genera, <it>Arabidopsis </it>and <it>Chlamydomonas</it>. In addition, many of the genes upregulated by water stress offer the possibility of manipulating the stress responses in rice.</p

    Intravascular Papillary Endothelial Hyperplasia (Masson's Hemangioma) of the Liver: A New Hepatic Lesion

    Get PDF
    Intravascular papillary endothelial hyperplasia (Masson's hemangioma) is a disease characterized by exuberant endothelial proliferation within the lumen of medium-sized veins. In 1923, Masson regarded this disease as a neoplasm inducing endothelial proliferation, however, now it is considered to be a reactive vascular proliferation following traumatic vascular stasis. The lesion has a propensity to occur in the head, neck, fingers, and trunk. Occurrence within the abdominal cavity is known to be very rare, and especially in the liver, there has been no reported case up to date. The authors have experienced intravascular papillary endothelial hyperplasia of the liver in a 69-yr-old woman, and report the case with a review of the literature

    Tailored Graphene Micropatterns by Wafer-Scale Direct Transfer for Flexible Chemical Sensor Platform

    Get PDF
    2D materials, such as graphene, exhibit great potential as functional materials for numerous novel applications due to their excellent properties. The grafting of conventional micropatterning techniques on new types of electronic devices is required to fully utilize the unique nature of graphene. However, the conventional lithography and polymer-supported transfer methods often induce the contamination and damage of the graphene surface due to polymer residues and harsh wet-transfer conditions. Herein, a novel strategy to obtain micropatterned graphene on polymer substrates using a direct curing process is demonstrated. Employing this method, entirely flexible, transparent, well-defined self-activated graphene sensor arrays, capable of gas discrimination without external heating, are fabricated on 4 in. wafer-scale substrates. Finite element method simulations show the potential of this patterning technique to maximize the performance of the sensor devices when the active channels of the 2D material are suspended and nanoscaled. This study contributes considerably to the development of flexible functional electronic devices based on 2D materials.

    Heat shock protein 70-mediated sensitization of cells to apoptosis by Carboxyl-Terminal Modulator Protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The serine/threonine protein kinase B (PKB/Akt) is involved in insulin signaling, cellular survival, and transformation. Carboxyl-terminal modulator protein (CTMP) has been identified as a novel PKB binding partner in a yeast two-hybrid screen, and appears to be a negative PKB regulator with tumor suppressor-like properties. In the present study we investigate novel mechanisms by which CTMP plays a role in apoptosis process.</p> <p>Results</p> <p>CTMP is localized to mitochondria. Furthermore, CTMP becomes phosphorylated following the treatment of cells with pervanadate, an insulin-mimetic. Two serine residues (Ser37 and Ser38) were identified as novel <it>in vivo </it>phosphorylation sites of CTMP. Association of CTMP and heat shock protein 70 (Hsp70) inhibits the formation of complexes containing apoptotic protease activating factor 1 and Hsp70. Overexpression of CTMP increased the sensitivity of cells to apoptosis, most likely due to the inhibition of Hsp70 function.</p> <p>Conclusion</p> <p>Our data suggest that phosphorylation on Ser37/Ser38 of CTMP is important for the prevention of mitochondrial localization of CTMP, eventually leading to cell death by binding to Hsp70. In addition to its role in PKB inhibition, CTMP may therefore play a key role in mitochondria-mediated apoptosis by localizing to mitochondria.</p
    corecore