9,930 research outputs found
Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect
We study the thermoelectric conductivities of a strongly correlated system in
the presence of a magnetic field by the gauge/gravity duality. We consider a
class of Einstein-Maxwell-Dilaton theories with axion fields imposing momentum
relaxation. General analytic formulas for the direct current(DC) conductivities
and the Nernst signal are derived in terms of the black hole horizon data. For
an explicit model study, we analyse in detail the dyonic black hole modified by
momentum relaxation. In this model, for small momentum relaxation, the Nernst
signal shows a bell-shaped dependence on the magnetic field, which is a feature
of the normal phase of cuprates. We compute all alternating current(AC)
electric, thermoelectric, and thermal conductivities by numerical analysis and
confirm that their zero frequency limits precisely reproduce our analytic DC
formulas, which is a non-trivial consistency check of our methods. We discuss
the momentum relaxation effects on the conductivities including cyclotron
resonance poles.Comment: v3: Minor chages, discussions clarified, version accepted in JHE
Gauge Invariance and Holographic Renormalization
We study the gauge invariance of physical observables in holographic theories
under the local diffeomorphism. We find that gauge invariance is intimately
related to the holographic renormalisation: the local counter terms defined in
the boundary cancel most of gauge dependences of the on-shell action as well as
the divergences. There is a mismatch in the degrees of freedom between the bulk
theory and the boundary one. We resolve this problem by noticing that there is
a residual gauge symmetry(RGS). By extending the RGS such that it satisfies
infalling boundary condition at the horizon, we can understand the problem in
the context of general holographic embedding of a global symmetry at the
boundary into the local gauge symmetry in the bulk.Comment: 14 pages, v2: minor changes, typos corrected, references adde
Character of Matter in Holography: Spin-Orbit Interaction
Gauge/Gravity duality as a theory of matter needs a systematic way to
characterise a system. We suggest a `dimensional lifting' of the least
irrelevant interaction to the bulk theory. As an example, we consider the
spin-orbit interaction, which causes magneto-electric interaction term. We show
that its lifting is an axionic coupling. We present an exact and analytic
solution describing diamagnetic response. Experimental data on annealed
graphite shows a remarkable similarity to our theoretical result. We also find
an analytic formulas of DC transport coefficients, according to which, the
anomalous Hall coefficient interpolates between the coherent metallic regime
with and incoherent metallic regime with as we
increase the disorder parameter . The strength of the spin-orbit
interaction also interpolates between the two scaling regimes.Comment: 15pages, 3 figure
Coherent/incoherent metal transition in a holographic model
We study AC electric(), thermoelectric(), and
thermal() conductivities in a holographic model, which is based
on 3+1 dimensional Einstein-Maxwell-scalar action. There is momentum relaxation
due to massless scalar fields linear to spatial coordinate. The model has three
field theory parameters: temperature(), chemical potential(), and
effective impurity(). At low frequencies, if , all three AC
conductivities() exhibit a Drude peak modified by
pair creation contribution(coherent metal). The parameters of this modified
Drude peak are obtained analytically. In particular, if the
relaxation time of electric conductivity approaches to
and the modified Drude peak becomes a standard Drude peak. If the
shape of peak deviates from the Drude form(incoherent metal). At intermediate
frequencies(), we have analysed numerical data of three
conductivities() for a wide variety of
parameters, searching for scaling laws, which are expected from either
experimental results on cuprates superconductors or some holographic models. In
the model we study, we find no clear signs of scaling behaviour.Comment: 27 pages, 9 figures, v2,v3: minor changes, typos corrected, reference
adde
The CKM matrix from anti-SU(7) unification of GUT families
We estimate the CKM matrix elements in the recently proposed minimal model,
anti-SU(7) GUT for the family unification,
+\,(singlets). It is shown that the real
angles of the right-handed unitary matrix diagonalizing the mass matrix can be
determined to fit the Particle Data Group data. However, the phase in the
right-handed unitary matrix is not constrained very much. We also includes an
argument about allocating the Jarlskog phase in the CKM matrix.
Phenomenologically, there are three classes of possible parametrizations,
\delq=\alpha,\beta, or of the unitarity triangle. For the choice of
\delq=\alpha, the phase is close to a maximal one.Comment: 11 pages of LaTex file with 2 figure
Discomfort luminance level of head-mounted displays depending on the adapting luminance
The Images in an immersive head-mounted display (HMD) for virtual reality provide the sole source for visual adaptation. Thus, significant, near-instantaneous increases in luminance while viewing an HMD can result in visual discomfort. Therefore, the current study investigated the luminance change necessary to induce this discomfort. Based on the psychophysical experiment data collected from 10 subjects, a prediction model was derived using four complex images and one neutral image, with four to six levels of average scene luminance. Result showed that maximum area luminance has a significant correlation with the discomfort luminance level than average, median, or maximum pixel luminance. According to the prediction model, the discomfort luminance level of a head-mounted display was represented as a positive linear function in log(10) units using the previous adaptation luminance when luminance is calculated as maximum area luminance
Increased Risk of Ischemic Stroke during Sleep in Apneic Patients.
BACKGROUND AND PURPOSE:The literature indicates that obstructive sleep apnea (OSA) increases the risk of ischemic stroke. However, the causal relationship between OSA and ischemic stroke is not well established. This study examined whether preexisting OSA symptoms affect the onset of acute ischemic stroke. METHODS:We investigated consecutive patients who were admitted with acute ischemic stroke, using a standardized protocol including the Berlin Questionnaire on symptoms of OSA prior to stroke. The collected stroke data included the time of the stroke onset, risk factors, and etiologic subtypes. The association between preceding OSA symptoms and wake-up stroke (WUS) was assessed using multivariate logistic regression analysis. RESULTS:We identified 260 subjects with acute ischemic strokes with a definite onset time, of which 25.8% were WUS. The presence of preexisting witnessed or self-recognized sleep apnea was the only risk factor for WUS (adjusted odds ratio=2.055, 95% confidence interval=1.035-4.083, p=0.040). CONCLUSIONS:Preexisting symptoms suggestive of OSA were associated with the occurrence of WUS. This suggests that OSA contributes to ischemic stroke not only as a predisposing risk factor but also as a triggering factor. Treating OSA might therefore be beneficial in preventing stroke, particularly that occurring during sleep
Evacuation Safety Evaluation in the Event of a Fire in a Shopping Center with a Connected Passageway in Korea
In this study, scenarios were developed to evaluate evacuation safety in the event of a fire in a shopping center with a connected passageway and to reduce Required Safe Egress Time (RSET). The RSET for all occupants by scenario is as follows: The first scenario which used the general evacuation route took 20 minutes and 7 seconds. The second scenario which used the third floor’s connected passageway for third and fourth floor, and using first floor entrance for first and second floor to evacuate took 14 minutes and 11 seconds. The evacuation time was 36 minutes and 52 seconds for scenario 3, which only used the fire escape stairs. The fourth scenario took 4 minutes and 19 seconds and used a connected passageway on every floor. Overall, this study shows that RSET for all occupants is reduced when a connected passageway is installed on every floor in shopping centers. Henceforth, more research is needed to determine whether connected passageway is a single firefighting object or a separate structure
- …