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Gauge/Gravity duality as a theory of matter needs a systematic way to characterise a system. We 
suggest a ‘dimensional lifting’ of the least irrelevant interaction to the bulk theory. As an example, we 
consider the spin–orbit interaction, which causes magneto-electric interaction term. We show that its 
lifting is an axionic coupling. We present an exact and analytic solution describing diamagnetic response. 
Experimental data on annealed graphite shows a remarkable similarity to our theoretical result. We also 
find an analytic formulas of DC transport coefficients, according to which, the anomalous Hall coefficient 
interpolates between the coherent metallic regime with ρ2

xx and incoherent metallic regime with ρxx

as we increase the disorder parameter β . The strength of the spin–orbit interaction also interpolates 
between the two scaling regimes.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Overview and summary: Recently, the gauge/gravity duality 
[1–3] attracted much interests as a possible candidate for a reliable 
method to calculate strongly correlated systems. It is a local field 
theory in one higher dimensional space called “bulk”, with a few 
classical fields coupled with anti-de Sitter (AdS) gravity. Since the 
strong coupling in the boundary is dual to a weak coupling in the 
bulk, the bulk fields can be considered as local order parameters 
of a mean field theory in the bulk. It also provided a new mech-
anism for instabilities in gravity language [4] which is relevant to 
the superconductivity [5,6] and the metal insulator transition [7]. 
However, as a theory for materials, it is still in lack of one essen-
tial ingredient, a way to distinguish one matter from the others. 
Although electron–electron interaction is traded for the gravity in 
the bulk, we still need to specify lattice–electron interactions to 
characterise the system. Without it, we would not know what sys-
tem we are working for.

Naively one may try to introduce realistic lattice at the bound-
ary to mimic the reality. However, its effects are mostly irrele-
vant in the infrared (IR) limit. In strong coupling limit where no 
quasiparticle exists, no Fermi surface (FS) exists either. Actually 
in the absence of the FS, it is almost impossible to write down 
any relevant interaction term in a local field theory in higher than 
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1+1 dimension.1 Therefore non-local effect may be essential for 
any interesting physics in strongly interacting system. One inter-
esting aspect of a holographic theory is that any local interaction 
in the bulk has non-local effect in the boundary [9]. Usually one 
characterises a many body system in continuum limit by a few in-
teraction terms rather than the detail of structure. Therefore, to 
characterise a system in holographic theory, what we want to sug-
gest is the dimensional-lifting, by which we mean promoting the 
“system characterising interaction” of the boundary theory to a 
term in the bulk theory using the covariant form of the interac-
tion.

One may wonder what the gravity dual of the Maxwell the-
ory is. In condensed matter, there are two components of elec-
tromagnetic interaction. One is electron–electron interaction and 
the other is lattice–electron interaction. While the main difficulty 
is coming from the former, system is characterised by the lat-
ter. Working hypothesis is that the electron–electron interaction 
is taken care of by working in asymptotic AdS gravity. Our pur-
pose is to include the electron–lattice interaction in this holo-
graphic scheme, which is possible for two reasons. First, in any 
boundary system with a conserved global U (1) charge, we have a 
bulk Maxwell theory, which can accommodate usual electromag-
netic field as a probe or an external source. It was used to build 

1 See however ref. [8] for semi-holographic approach based on IR AdS2 and its 
virtual C F T2, which is different from ours.
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the holographic version of superconductivity mentioned above and 
also to calculate electric/thermal transport coefficients [10–13]. 
Second, we can use a relativistic theory for a non-relativistic sys-
tem. The relativistic invariance highly constrains the possible form 
of extension of interaction. A practical way to proceed is to turn 
on the interaction one by one for technically simplicity. The co-
variant form of the interaction is either scalar or top form. The 
former is trivially lifted to higher dimension, e.g., Fμν Mμν can be 
used in any dimension. Now suppose the top form of the boundary 
theory is Fd and the bulk theory already contains scalar operator 
ϕ and one form ω1. Then we have essentially two choices: ϕ dFd
and ω1 ∧ Fd to avoid the total derivative term.

To discuss the idea in more specific context, we consider 
the spin–orbit interaction in 2+1 dimensional systems. It creates 
lots of interesting phenomena including topological insulators and 
Weyl semi-metal [14–18] by changing band structures, which in 
turn causes magneto-electric phenomena [19,20] like anomalous 
Hall effect. Naively, introducing the spin–orbit interaction involve 
fermions.2 However, we can integrate out the massive fermions, 
thereby avoid dealing with fermions in our theory. Notice that 
in the absence of Fermi sea as in our strong coupling problem, 
fermions can be considered to be massive. It is well known that 
the fermions integrated out leave the Chern–Simons term A ∧ F
[21,22], which can be lifted to 4 dimension as F ∧ F ∼ E · B .3

Since it is a total derivative by itself, we have to couple it with 
an appropriate scalar operator to have a non-trivial dynamical ef-
fect. In this paper, we choose it to be the kinetic energy term 
of the axion scalar fields χI . That is our interaction term is 
qχ

∑
I=1,2 (∂χI )

2 F ∧ F , where χI was introduced to provide some 
disorder giving momentum dissipation [32]. Notice that this term 
is odd in time reversal, which is appropriate for the case where 
magnetisation is non-trivial.4

Since we want to have finite temperature, chemical potential, 
magnetic fields, and finite DC conductivity, the system should con-
tain metric, gauge fields and axion scalar fields (gμν, Aμ, χI ) as 
the minimal ingredients in the bulk. So we have to start with the 
Einstein–Maxwell-axion system. We have found an exact analytic
solution of such a non-trivially coupled system with a new inter-
action term, consequently yielding an explicit and analytic result 
for the DC conductivity using recent technology [10–12]. While the 
Hall effect is obviously connected to our system from the construc-
tion, the fully back reacted system shows diamagnetic response. 
This is because we examined metallic state at finite temperature 
and did not include spin degrees of freedom explicitly. Finally, we 
comment on the relevance of our result to experimental data. In 
[33], it was reported that graphite, once annealed to wash out 
the ferromagnetic behaviour, shows a non-linear diamagnetic re-
sponse which is very similar to our analytic result. Also it turns out 
that our analytic conductivity formulas reproduce the experimen-
tal data on the scaling relation between the non-linear anomalous 
Hall coefficients and the longitudinal resistivity. I.e. the non-linear 
anomalous Hall coefficients interpolate between the linear and 

2 The Chern–Simons term is derived from a minimal interaction ψ̄γ μψ Aμ . If we 
take non-relativistic limit first, the interaction Lagrangian is Lint = �μ · �B in the elec-
tron at rest frame, which becomes ψ̄γ μνψ Fμν in covariant form that is valid in 
any frame. When we include fermions explicitly, we have to take into account this 
issue.

3 Previously the Chern–Simons term in the bulk and its higher dimensional ana-
logue were extensively considered in holography to discuss the chiral effects or 
instability to the inhomogeneous phases [23–31].

4 In order to handle time reversal invariant case, one can consider 
qχ

∑
I=1,2 dχI ∧ A ∧ F ∼ qχ

∑
I=1,2 χI F ∧ F . One can also consider the possibility 

that qχ contains an Ising spin variable ±1 which is odd under time reversal. In this 
paper we focus on the time reversal breaking case to consider non-zero magnetisa-
tion.
quadratic dependence on the longitudinal resistivity. Considering 
that we added just one interaction term, these are unexpectedly 
rich consequences.

The model and background solution: With motivations de-
scribed above, we start from the Einstein–Maxwell-axion action 
with the Chern–Simons interaction

2κ2 S =
∫

d4x
√−g

⎧⎨
⎩R + 6

L2
− 1

4
F 2 −

∑
I=1,2

1

2
(∂χI )

2

⎫⎬
⎭

− 1

16

∫
qχ (∂χI )

2 F ∧ F + Sc , (1)

where qχ is a coupling, and κ2 = 8πG and L is the AdS radius 
and we set 2κ2 = L = 1. Sc is the counter term which is necessary 
to make the action finite. Explicit form of Sc is written in (25)
at the end of this paper. The axion (χI ) which is linear in {x, y}
direction breaks translational symmetry and hence gives an effect 
of momentum dissipation [32]. Instanton density coupled with the 
axion can generate magneto-electric property: if we add charge, 
non-trivial magnetisation is generated. The equations of motion are 
rather long so we wrote it in (26) at the end.

As ansatz to solutions, we use the following form

A = a(r)dt + 1

2
H (xdy − ydx) ,

χ1 = β x , χ2 = β y ,

(2)

with the metric ansatz

ds2 = −U (r)dt2 + dr2

U (r)
+ r2(dx2 + dy2) . (3)

From the equations of motion, we found exact solution

U (r) = r2 − β2

2
− m0

r
+ q2 + H2

4r2
+ β4 H2q2

χ

20r6
− β2 Hqqχ

6r4
,

a(r) = μ − q

r
+ β2 Hqχ

3r3
,

(4)

where μ is a free parameter interpreted as the chemical potential 
and q and m0 are determined by the condition At(r0) = U (r0) = 0
at the black hole horizon (r0). q is the conserved U (1) charge in-
terpreted as a number density at the boundary system. m0 turns 
out to be half of the energy density (9) and β is related to mo-
mentum relaxation rate

q = r0μ + 1

3
θ H with θ = β2qχ

r2
0

,

m0 = r3
0 + r2

0μ
2 + H2 − 2β2r2

0

4r0
+ θ2 H2

45r0
.

(5)

The solution (4) reproduces the dyonic black hole solution with 
momentum relaxation [12] when qχ vanishes.

Diamagnetic response: The thermodynamic potential density 
W in the boundary theory is computed by the Euclidean on-shell 
action S E of (25): S E ≡ V2W/T , V2 = ∫

dxdy using the solutions 
(2)–(3)

W = −r3
0 − 1

4r0

(
μ2r2

0 + 2β2r2
0 − 3H2

)
+ 2

3
μθ H + 7

45r0
θ2 H2.

(6)

The system temperature T is identified with the Hawking temper-
ature of the black hole,

T = 3

4π
r0 − 1

16πr3
0

(
(q − θ H)2 + H2 + 2r2

0β2
)

, (7)
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Fig. 1. (a) The external magnetic field dependences of the magnetisation at T = 1 (purple), T = 1.2 (blue), T = 1.5 (green) and T = 2 (red) with qχ = 10, β = 2.2, μ = 0. 
(b) Theory curve compared with experimental data of annealed highly oriented pyrolytic graphite (HOPG) sample for T = 150 K (rectangle) and T = 300 K (circle) in [33]. 
For comparison, the blue and red curves obtained by our formula (14) are added. The red one is for T = 1, β = 2 and the blue one is for T = 0.8, β = 2.2. qχ = 10 and 
μ = 0 for both cases. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
and the entropy density is given by the area of the horizon

s = 4πr2
0. (8)

We have numerically checked that the entropy is a monotonically 
increasing function of temperature for the parameters analysed 
in this paper. The energy density ε is one point function of the 
boundary energy momentum tensor T00, which is holographically 
encoded in the metric (5):

ε = 〈T00〉 = 2m0. (9)

It is remarkable that the complicated expression of the ther-
modynamic potential density (6) gives a simple thermodynamic 
relation

W = ε − sT − μq , (10)

with energy, temperature and entropy given by (7), (8) and (9). 
The variation of the potential density (6) boils down to

δW = −M̃δH − sδT − qδμ, (11)

where

M̃ ≡ 1

r0

(
−H + 1

3
θq − 1

5
θ2 H

)
. (12)

Notice that the (10) and (11) implies the first law of thermody-
namics;

δε = −M̃δH + T δs + μδq. (13)

Two important remarks are in order: First, H is interpreted as an 
externally applied field, although it is a fully back reacted object in 
the bulk. H is the magnetic field generated by free current, not the 
magnetic induction which is usually denoted by B . This is because 
we did not encode any spin dynamics in the bulk and we do not 
have fully dynamical gauge fields at the boundary. The Maxwell 
fields at the boundary enter as an external source or as a weak 
probe field.

Second, M̃ has dimension 1 and describes a genuine 2+1 di-
mensional system. Therefore, it can not be identified as the mag-
netisation M of a physical system which is a 2 dimensional array 
in 3 spatial dimension. Furthermore, since M̃ and H are different 
in mass dimension, they cannot be added to form magnetic in-
duction B . The magnetic field H and magnetisation M are those of 
spatial 3 dimension, therefore both H and M should have the same 
mass dimension 2. If we just multiply M̃ by r0, a mass dimension 
1 parameter which is a constant for adiabatic processes, we would 
get B = H + M = 0 for qχ = 0. It means that the dyonic black hole 
exhibits the Meisner effect, which is not physical. The problem can 
be traced to the fact that after we scale ε by r0 to balance the di-
mension of M and H , the free energy contains H2/2, which is the 
field energy of magnetic field applied on vacuum. When we calcu-
late the magnetisation by taking its derivative, we should subtract 
it from the free energy as suggested by Landau and Lifshitz in sec-
tion 32 of ref. [34]. Therefore, we calculate the magnetisation from 
F ≡ r0ε − 1

2 H2:

M = − ∂ F

∂ H

∣∣∣
fixed r0,q

= θq/3 − θ2 H/5. (14)

Both terms here are the consequences of the axionic coupling.
The first term is the magnetisation at H = 0, which will be de-

noted by M0. It is proportional to the charge of the system and 
gives ferromagnetism. More explicitly,

M0 = 1

3
θq = μβ2qχ

3r0
, (15)

with r0 = (4π T + √
16π2T 2 + 3(μ2 + 2β2))/6 at H = 0. For given 

μ, β and qχ , M0 has the maximum value at zero temperature and 
decreases as 1/T for large temperature. In the coherent metallic 
regime [35] β/μ 
 1, M0 ∼ β2qχ . The second term in (14) rep-
resents the back reaction of the system to the external magnetic 
field and gives diamagnetism.

We want to analyse the magnetisation as a function of the 
magnetic field with the other parameters fixed. Notice that, at fix 
temperature, r0 has to be computed from (7). In Fig. 1(a), we draw 
the magnetic field dependence of the magnetisation at different 
temperatures for μ = 0, qχ = 10, and β = 2. The magnetisation
seems to be saturated for large magnetic field and the magnetic 
susceptibility is decreasing function of temperature. Our results are 
very similar to the graphite data in Fig. 1(b) [33]. Here, in addition 
to experimental data, we added the blue and red curves using our 
formula (14) for comparison, where the red one is for T = 1, β = 2
and the blue one is for T = 0.8, β = 2.2. qχ = 10 and μ = 0 for 
both cases.

DC transport coefficients: Recently, a systematic way to com-
pute the DC transport coefficients has been developed in [11,12,36]
by which we can compute the longitudinal and transverse electric 
and thermoelectric conductivities. Here we write only result.
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σxx = (F − H2)(F + G2)

(F2 + H2G2)
,

σxy = HG(2F + G2 − H2) + θ(F2 + H2G2)

(F2 + H2G2)
,

αxx = sG(F − H2)

F2 + H2G2
, αxy = s H(F + G2)

F2 + H2G2
− H

r0
,

(16)

where

F = r2
0β2 + H2

(
1 + θ2

)
− θqH ,

G = q − θ H, s = 4πr2
0 .

(17)

We gave some details at the end. We check two limits: i) for β = 0, 
the DC conductivities (16) become σxx = 0, σxy = q/H , αxx = 0 and 
αxy = s/H , which agrees with [37]; ii) for qχ = 0 (16) reproduces 
the result obtained in [12,36].

At finite β and finite qχ but with H = 0 the electric conductiv-
ities reduce to:

σxx = 1 + μ2

β2
, σxy = θ = 3M0

q
. (18)

Notice that σxx is a known result [32], but, interestingly, σxy is 
non-zero even when H = 0. This phenomena is related to anoma-
lous Hall effect, which will be discussed next. It is the result of the 
axion coupling we introduced, which gives a ferromagnetism with 
the magnetisation M0 (15).

Anomalous Hall effect: In ferromagnetic conductor, the Hall 
effect is about 10 times bigger than in non-magnetic material. 
This stronger Hall effect in ferromagnetic conductor is known as 
the anomalous Hall (AH) effect [38,39]. The precise mechanism 
for AH effect has a century-long history of debates [38]. Three 
mechanisms have been suggested: i) intrinsic one due to anoma-
lous velocity, ii) side jump, iii) skew scattering. Mechanism i) 
was suggested in 1950’s by Karpulus and Luttinger. In modern 
days, the anomalous velocity is understood by the Berry phase 
(va = e

h̄ E × bBerry). Side jump mechanism is suggested by Berger 
in ref. [40] where he showed that the electron velocity is deflected 
in opposite directions by the opposite electric fields experienced 
upon approaching and leaving an impurity. The skew scattering 
was suggested by Smit in [41,42] where he noticed that asymmet-
ric scattering from impurities is caused by the spin–orbit interac-
tion. The fundamental interaction underlying all these three is the 
spin–orbit interaction.

It has been known that there is a power law relationship be-
tween the anomalous part (R S ) of the Hall resistivity (ρyx) and 
the longitudinal resistivity (ρxx):

Rs ∼ ρα
xx , (19)

with the anomalous Hall coefficient, R S , defined by the relation

ρyx = R H H + R S M, (20)

where R H is the usual Hall coefficient. The power α had been 
computed for three scenarios to give α = 2 for i), ii) and α = 1
for iii).

From (14) and (18) our model describes a ferromagnetic con-
ductor, therefore it will be interesting to study AH effect. The 
resistivity matrix (ρ) can be computed by inverting the conduc-
tivity matrix (σ ) in (16) i.e. ρ = σ−1. R S is identified by ρyx at 
H = 0:

ρyx

∣∣∣
H=0

= θ

θ2 + (1 + μ2/β2)2
= R S M0. (21)

Since M0 = 1 qθ , anomalous Hall coefficient is given by
3
Fig. 2. Relation between ρxx and q0
3 Rs (q0 ≡ μr0) at fixed qχ = 1 with μ/T = 0.1

(red), 2 (green), 5 (blue) and 10 (purple) in log–log plot. The arrow represents the 
direction of increasing β/μ. R S ∼ ρ2

xx in small β/μ and R S ∼ ρxx in large β/μ
regime. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

R S = 3

r0μ

1

θ2 + (1 + μ2/β2)2
. (22)

The longitudinal resistivity at H = 0 reads

ρxx = 1 + μ2/β2

θ2 + (1 + μ2/β2)2
. (23)

The scaling behaviours can be read easily for two limits:

R S ∼ ρ2
xx, or R S ∼ ρxx, (24)

depending on β/μ 
 1 or β/μ � 1. The same scaling relations 
hold for θ 
 1 or θ � 1. For general value of β/μ, the scaling 
behaviour is shown in Fig. 2 as the slope. In the figure, the arrow 
represents the directions of increasing disorder parameter β , and 
μ/T = 0.1 (red), 2 (green), 5 (blue) and 10 (purple). Notice the 
transition from α = 2 to α = 1 is sharper for larger temperature. 
Notice also that α = 2 for small β/μ whatever is the spin–orbit 
interaction strength θ .

In ref. [35], material with β/μ 
 1 was identified as a coherent 
metal of which optical conductivity has a well defined Drude peak 
as if it had quasiparticles. For β/μ � 1, the system behaves as an 
incoherent metal without a Drude peak. Interestingly, such electri-
cally classified coherent/incoherent metal also shows AH property 
with the characteristic power α = 2, 1. This is consistent with the 
interpretation of β as impurity density since large β would have 
much extrinsic disorder effects. Notice that we have two scaling 
regimes in one model with interpolating parameters given by the 
disorder parameter β or spin–orbit coupling strength θ , while in 
conventional method different scalings are associated with differ-
ent mechanisms. The fact that all three mechanisms are origi-
nated from spin–orbit interaction is reflected to our result which 
is a consequence of adding just one interaction term representing 
spin–orbit coupling.

Method: DC conductivities from black hole horizon
Here we explain how to obtain the DC conductivities (16). The 

action with counter terms are given by

2κ2 S =
∫
M

d4x
√−g

⎧⎨
⎩R + 6

L2
− 1

4
F 2 −

∑
I=1,2

1

2
(∂χI )

2

⎫⎬
⎭

− 1

16

∫
M

qχ (∂χI )
2 F ∧ F + Sc ,

Sc = −
∫

∂M

d3x
√−γ

⎛
⎝2K + 4

L
+ R[γ ] −

∑
I=1,2

L

2
∇χI · ∇χI

⎞
⎠ .

(25)
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The equations of motion are

∇2χI + qχ

8
∇M

(
1√−g

ε P Q R S F P Q F R S∇MχI

)
= 0 ,

∇M F MN + qχ

4
∇M

(
(∂χI )

2 1√−g
εMN P Q F P Q

)
= 0 ,

R MN − 1

2
gMN

(
R + 6 − 1

4
F 2 − 1

2
(∂χI )

2
)

− 1

2
F M P F N

P − 1

2
∂MχI∂NχI

− qχ

16
∂MχI∂NχI

1√−g
ε P Q R S F P Q F R S = 0 ,

(26)

where ε0123 = εtxyr = 1.
Once we get a background solution of these equations, we can 

compute the DC transport coefficients from the black hole horizon 
data. Let us start by defining a useful quantity:

FMN ≡ √−g F MN + qχ

4
(∂χ)2 εMN P Q F P Q . (27)

Then the Maxwell equation and the boundary current can be writ-
ten as

∂MFMN = 0 , Jμtot = lim
r→∞Fμr . (28)

If we assume all fields depend on t and r, one can obtain another 
expression for the total boundary current using the Maxwell equa-
tion

Jμtot = lim
r→r0

Fμr +
∞∫

r0

dr∂tF tμ . (29)

Now we want to consider fluctuations corresponding to the 
boundary DC electric field Ei and the DC temperature gradient 
ζi = ∇i T

T . Following [11], we may consider fluctuations around the 
background as follows:

δAi = − (Ei − ζia(r)) t + δai(r) ,

δgti = −U (r) ζi t + r2δhti ,

δgri = r2δhri ,

δχi = δχi(r) .

(30)

In the linear level the time dependent part of the equations of 
motion drops out by the above choice of fluctuations. Thus these 
fluctuations are stable static fluctuations to the DC sources, (Ei , ζi).

To be a physical fluctuation in the black hole background, the 
fluctuation should satisfy the in-falling boundary condition as it 
approaches the horizon. This condition can be described in terms 
of the Eddington–Finkelstein coordinates v = t + 1

4π T ln (r − r0), 
and the in-falling fluctuation should depend on v near horizon. 
Therefore, the regularity at the horizon implies

δhti ∼ − ζi

4π T
log (r − r0)

U (r)

r2
+ h(0)

ti +O((r − r0)) ,

δhri ∼ Hri

r2U (r)
+ h(0)

ri +O((r − r0)) ,

δai ∼ − Ei − ζia(r)

4π T
log(r − r0) + a(0)

i +O((r − r0)) ,

δχ ∼ δχ
(0) +O((r − r )) .

(31)
i i 0
By expanding (r, i) component and (t, i) component of the Einstein 
equations, it turns out that Hri = r2

0h(0)
ti and h(0)

ti can be deter-
mined.5

Now we are ready to consider the total current (29) in the lin-
ear level. The current can be calculated by plugging (4) and the 
fluctuation (30). Firstly, the second part is
∞∫

r0

dr∂tF ti = εi j

r0

(
−H + 1

3
θq − 1

5
θ2 H

)
ζ j

= εi j

r0
(−H + M) ζ j . (32)

The second term is the contribution of the magnetisation current 
Jmag [43]. Thus the relevant part of the current is the first term, 
which can be written in terms of the horizon data:

Jμ = lim
r→r0

Fμr

= Ei − (q − θ H)h(0)
ti − H

r2
0

εi jHr j + εi jθ E j − εi j
H

r0
ζ j . (33)

Finally, the expressions h(0)
ti and Hri obtained from the Einstein 

equation give us the electric conductivities and the thermoelectric 
coefficients (16) using formula σi j = ∂ J i

∂ E j
and αi j = 1

T
∂ J i

∂ζ j
. The de-

tails of h(0)
ti and Hri will be given in a longer version of this work.

Summary and discussion: We view the holographic principle 
as a set of axioms to calculate strongly interacting systems. For 
reader’s convenience we first list them below [9].

1. For a strongly interacting system with conformal symmetry 
at UV, there is a dual gravity with asymptotic AdS bound-
ary. Non-AdS geometry may be regarded as an IR part of an 
asymptotic AdS geometry.

2. To calculate the correlation function of an operator O�

with dimension � and spin p, we introduce a source field 
φ0(x) with spin p and dimension �. Extend φ0(x) into one 
higher dimensional space φ(x, r) such that φ(x, r = ∞) ∼
φ0(x)/rd−2p−� . Identify the generating function of confor-
mal field theory Z [φ0] with that of gravitational system 
exp(−S[φ0]).

3. For a global symmetry at the bulk, we have a local gauge sym-
metry at the boundary.

4. For Euclidean Green functions, Dirichlet boundary value at in-
finity is enough. For causal green function, assign the bound-
ary condition (BC) at the IR region in addition to the Dirichlet 
BC at the infinity.

5. Temperature and chemical potential are provided by regular-
ity of metric, gauge fields at the horizon or its replacing IR 
geometry.

6. Characterise the system by lifting the least irrelevant inter-
actions at the boundary to the bulk. For strongly correlated 
electron system, the electron–electron interaction is counted 
by the gravity, but electron–lattice interactions should be 
taken into account explicitly. The gauge field dual to the con-
served U (1) current can have interaction terms to take care of 
electron–lattice interactions.

The last item is what we added in this paper. In this paper, we 
considered the magneto-electric phenomena induced by the spin–
orbit coupling interaction as an example of dimensional lifting 
in holographic theory. When electron spins are correlated, adding 
charge carrier changes the magnetic property as well as the charge 

5 Since the expression is lengthy but not very illuminating we don’t present here.
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transport. In effective field theory approach, such electric–magnetic 
effect can be implied by adding the Chern–Simons term ∼ A ∧ F
in 2+1 dimension. It act as a crossing source of electricity and 
magnetism. With such a term, the system can pick up a magnetic 
source when we provide electric charge and vice versa.

We work at finite temperature, chemical potential, and mag-
netic fields. The metric, gauge and axion fields (gμν, Aμ, χI ) are 
playing the role of coupled order parameters. We have found the 
exact and analytic solution of such a complicated coupled system 
with a non-trivial interaction, which made it possible to get an ex-
plicit and analytic DC conductivity formulas.

When we split the current into orbital and magnetisation parts, 
it depends on the definition of the magnetisation, namely, whether 
we use M or M̃ . The electric conductivity does not change but 
thermo-electric conductivity changes. The α for M and that for M̃
are related in simple manner: σi j and αxx are not changed while 
αM

xy = αM̃
xy − H/r0. It turns out that Onsager relations are valid in 

both cases, α = ᾱ, a remarkable fact.
Our results on the Hall resistivity shows a non-linear diamag-

netic response is similar to that of graphite system and also to 
high Tc superconductor Bi2Sr2CaCu2O8. Also we have shown that 
the anomalous Hall coefficients in our model interpolate between 
the linear and quadratic regime on the resistivity dependence as a 
function of disorder parameter and spin–orbit interaction coupling. 
It is particularly interesting to see that electrical coherent/incoher-
ent metal has magnetic behaviour with quadratic/linear resistivity 
dependence. Experimentally diverse materials were studied. Some 
shows α near 2 and the other 1, sometimes old and new data 
crashes. So, detailed data mining is postponed to future investi-
gation.

Our model does not include paramagnetic behaviour because 
we integrated out fermion and therefore spin degrees of freedom 
is not included explicitly. Also we could have chosen the scalar 
field χ itself instead of its kinetic term as a scalar partner of F ∧ F
term. We will report on these issues elsewhere.
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