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1 Introduction

Strongly coupled electron systems show many interesting phases such as non-Fermi liquid,

high Tc superconductor and pseudo gap phase. Some of the most important and basic

experimental observables in investigating those systems are the conductivities: electric (σ),

thermoelectric (α, ᾱ), and thermal (κ̄) conductivity. Therefore, it is essential to develop a

theoretical method to compute conductivities to explain and guide experiments. However,

due to strong coupling, the perturbative analysis of quantum field theory does not work

and we don’t have a reliable systematic tool to compute them.

Gauge/gravity duality is an approach for such strong coupling problems, and it has

been developed as a method for conductivity [1, 2]. Some early works treated systems

which have translation invariance. However, at finite charge density the direct current

(DC) conductivities in such systems are infinite. To solve this problem, it is essential to

introduce momentum relaxation. For this, several ideas have been proposed.

The most straightforward way is to impose inhomogeneous boundary conditions of the

bulk fields to break translation invariance [3–8]. Massive gravity models studied in [9–

13] give mass terms to gravitons, which break the spatial diffeomorphisms (not the radial

and temporal ones), and consequently break momentum conservation of the boundary

field theory with translational invariance unbroken [11]. Holographic Q-lattice models and

those with massless linear dilaton/axion fields [14–23] take the advantage of a continuous

global symmetry of the bulk theory. Some other models utilise a Bianchi VII0 symmetry
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to construct black holes dual to helical lattices [24–27]. All these models yield finite DC

conductivities as desired.

However, all models with momentum relaxation, except [23], did not include the mag-

netic field. Since the transport properties at finite magnetic field such as the quantum Hall

effect, the Nernst effect, and the Hall angle, are also important basic probes for strongly

correlated electron system, it is timely and essential to develop the methods for them in the

presence of momentum relaxation. Indeed, the holographic analysis on conductivities at fi-

nite magnetic field was one of the pioneering themes opening up the AdS/CMT (condensed

matter theory) [28–30]. The purpose of our paper is to extend them by implementing mo-

menturm relaxation holographically.1 This paper is also a companion of [19, 32, 33], where

all DC/AC electric (σ), thermoelectric (α, ᾱ), and thermal (κ̄) conductivities are analysed

thoroughly in the absence of magnetic field.

We consider a general class of Einstein-Maxwell-dilaton theories with axion fields im-

posing momentum relaxation. First, we derive the analytic formulas for DC electric (σ),

thermoelectric (α, ᾱ), and thermal (κ̄) conductivity in terms of black hole horizon data

following the method developed in [34]. Based on these formulas we discuss the model

independent features of the Nernst signal. Notice that the Nernst signal (2.55)

eN = −(σ−1 · α)y
x

is zero in the holographic model without momentum relaxation, since the electric conduc-

tivity is infinite. Thus, momentum relaxation is essential for the Nernst effect. The Nernst

signal has interesting properties which could support the existence of the quantum critical

point (QCP). As we approach to the QCP or the superconducting domain, the strength

of the Nernst signal becomes stronger and shows a non-linear dependence on the mag-

netic field, which is different from the expectation based on the Fermi liquid theory [35].2

See [29, 31], for pioneering works on the Nernst effect by the holographic approach and

the magnetohydrodynamics with a small impurity effect. We deal with similar topics by

means of a general class of holographic models encoding momentum relaxation, where we

assume that momentum relaxation is related to finite impurity density, which could be

large. Note, however, that this relation is not proven yet.

After discussions on a class of models, we study in detail the dyonic black hole back-

ground [28–30], modified by the specific axion fields introduced in [16]. We numerically

compute AC electric (σ), thermoelectric (α, ᾱ), and thermal (κ̄) conductivity and confirm

their zero frequency limits agree to the DC formulas that we have derived analytically. It

recovers the results in [28] if momentum relaxation vanishes. We discuss the momentum

relaxation effect on the conductivities including the cyclotron resonance poles, which was

first observed in [30].

This paper is organized as follows. In section 2, we consider a general class of Einstein-

Maxwell-dilaton theories with axion fields and derive general formulas for the DC electric,

thermoelectric, and thermal conductivity at finite magnetic field as well as the Nernst

1In [31], momentum relaxation is introduced perturbatively in the hydrodynamic limit.
2These anomalous behavior may be described by a liquid of quantized vortices and anti-vortices in

non-superconducting phase. See [37] for a speculative point of view.
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signal. In section 3, as an explicit example, we analyse the dyonic black brane with the axion

hair and discuss the Hall angle and the Nernst effect. In section 4, we continue our analysis

on the model introduced in section 3. We compute the AC electric, thermoelectric, and

thermal conductivity numerically. The momentum relaxation effect on AC conductivities

and the cyclotron resonance poles are discussed. We compare the zero frequency limit of

our numerical AC conductivities with the DC analytic formulas derived in section 3. In

section 5 we conclude.

Note added. While this work was near completion, we noticed the appearance of [38–40]

which have some overlap with ours. [38] deals with a massive gravity model at finite mag-

netic field. [39] considers the same class of models as ours. [40] obtains general expressions

for conductivities at finite magnetic field using the memory matrix formalism.

2 General analytic DC conductivities at finite magnetic field

In this section, we will derive analytic formulas for the DC conductivities (σ, α, ᾱ, κ̄) in

the presence of a magnetic field, from a general class of Einstein-Maxwell-Dilaton theories

with axion fields (χ1, χ2)

S =

∫
d4x
√
−g
[
R− 1

2

[
(∂φ)2 + Φ1(φ)(∂χ1)2 + Φ2(φ)(∂χ2)2

]
− V (φ)− Z(φ)

4
F 2

]
, (2.1)

where F = dA and all Φ1(φ), Φ2(φ), and Z(φ) should be non-negative for the positive en-

ergy condition. Without the magnetic field, analytic formulas for conductivities (σ, α, ᾱ, κ̄)

were computed in [34] while, with the magnetic field, the electric conductivity σ was pre-

sented in [23]. Here we compute all the other conductivities as well. We employ the

method developed in [8, 34], but a finite magnetic field poses some technical subtlety. We

will explain how to treat it. The action (2.1) yields equations of motion:

RMN−
1

2
gMNL−

1

2
(∂Mφ)(∂Nφ)− 1

2

∑
i=1,2

Φi(φ)(∂Mχi)(∂Nχi)−
Z(φ)

2
FPMFPN = 0 , (2.2)

∇M
(
Z(φ)FMN

)
= 0 , (2.3)

∇M
(
Φi(φ)∇Mχi

)
= 0 , (2.4)

∇2φ− 1

2

∑
i=1,2

∂Φi

∂φ
(∂χi)

2 − ∂V (φ)

∂φ
− 1

4
F 2∂Z(φ)

∂φ
= 0 , (2.5)

where, L is the Lagrangian density of the action (2.1).

To study the system at finite chemical potential with a background magnetic field (B),

we take the gauge potential as

A = AMdxM = a(r)dt+
B

2
(xdy − ydx) . (2.6)

We choose the axion fields

χ1 = k1x , χ2 = k2y , (2.7)
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which break translational invariance and can give rise to momentum relaxation [14, 15]. A

metric anasatz consistent with the choice (2.6) and (2.7) is

ds2 = GMNdxMdxN = −U(r)dt2 +
1

U(r)
dr2 + ev1(r)dx2 + ev2(r)dy2, (2.8)

with φ = φ(r). We consider the case in which the black hole solution exists and its horizon

is located at r = rh, i.e. U(rh) = 0. We further assume the ansatz

Φ1(φ) = Φ2(φ) =: Φ(φ) , v1(r) = v2(r) =: v(r) , k1 = k2 =: β . (2.9)

First, the Maxwell equation (2.3) yields a conserved charge ρ in the r-direction

ρ =
√
−gZ(φ)F rt = Z(φ)ev(r)a′(r) , (2.10)

which is identified with the number density in the boundary field theory. The axion equa-

tion (2.4) is trivially satisfied. The Einstein equation (2.2) and scalar equation (2.5) become

v′′(r) = −1

2

(
v′(r)2 + φ′(r)2

)
, (2.11)

U ′(r) = − e−2v(r)

2Z(φ)v′(r)

[
ρ2 + 2e2v(r)V (φ)Z(φ) +B2Z(φ)2

+ ev(r)Z(φ)
(

2β2Φ(φ) + ev(r)U(r)
(
v′(r)2 − φ′(r)2

))]
, (2.12)

U ′′(r) =
e−2v(r)ρ2

Z(φ)
+B2e−2v(r)Z(φ) + e−v(r)β2Φ(φ) +

U(r)

2

(
v′(r)2 − φ′(r)2

)
, (2.13)

by which we can obtain the background solutions for given Z(φ) and V (φ). For example,

if we choose

φ(r) = constant , Φ(φ) = 1 , Z(φ) = 1 , V (φ) = −6/L2, (2.14)

the background becomes the AdS-dynonic black hole geometry with the momentum relax-

ation. We will discuss it in section 3 in detail.

To compute the conductivities for the general background, we consider small pertur-

bations around the background obtained by (2.11)–(2.13)

δAi = t δf
(1)
i (r) + δai(r) , (2.15)

δGti = t δf
(2)
i (r) + δgti(r) , (2.16)

δGri = ev(r)δgri(r) , (2.17)

δχi = δχi(r) , (2.18)

where i = 1, 2 and t denotes the time coordinate. δf
(1)
i (r) and δf

(2)
i (r) are chosen

δf
(1)
i (r) = −Ei + ζia(r) , (2.19)

δf
(2)
i (r) = −ζiU(r) , (2.20)
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where Ei is the electric field and −ζi is identified with the temperature gradient [34]. In

spite of the explicit t dependence in (2.15) and (2.16) all equations of motion of fluctuations

turn out to be time-independent, which is the reason to introduce the specific forms of (2.19)

and (2.20). Furthermore, the electric current and heat current can be computed as the

boundary (r →∞) values of J i(r) and Qi(r),

J i(r) = Z(φ)
√
−g F ir(r) (2.21)

= −Z(φ)
{
U(r)

(
− εijBδgrj(r) + δij δa′j(r)

)
+ a′(r)δij δgtj

}
, (2.22)

Qi(r) = U2(r) δij∂r

(
δgtj(r)

U(r)

)
− a(r)J i(r) , (2.23)

which were identified in [34] at B = 0 and they are still valid at finite B.

Our task is to plug the solutions of the fluctuation equations into (2.21) and (2.23)

and read off the coefficients of Ei and ζi. First, the Maxwell equation yields

0 = ∂M
(
Z(φ)

√
−g F iM

)
= ∂r

(
Z(φ)

√
−g F ir

)
+ ∂t

(
Z(φ)

√
−g F it

)
(2.24)

= ∂rJ
i −Bεije−v(r)ζjZ(φ) .

Therefore, the current at the boundary is given by

J i(∞) = J i(rh) +Bεijζj

∫ ∞
rh

dr′e−v(r′)Z
(
φ(r′)

)
≡ J i(rh) +BεijζjΣ1 . (2.25)

Next, let us turn to the heat current, Qi, (2.23). It is convenient to start with the derivative

of Qi.

∂rQ
i = 2U(r)δij∂r

(
δgtj(r)

U(r)

)
+ U2(r)δij∂2

r

(
δgtj(r)

U(r)

)
− a′(r)J i − a(r)J i

′

= BεijEje
−v(r) − 2Bεijζja(r)e−v(r)Z(φ) . (2.26)

After using the Einstein equations for fluctuations with the ansatz (2.17)–(2.18),

2U(r)δg′′tx(r) =
{

2B2Z(φ)e−2v(r) + 2β2Φ(φ)e−v(r) + U(r)
(
v′2(r)− φ′2(r)

)}
δgtx(r)

− 2ρe−v(r)U(r)
{
δa′x(r) +Bδgry(r)

}
+ 2BZ(φ)e−v(r)

{
ζya(r)− Ey

}
,

2U(r)δg′′ty(r) =
{

2B2Z(φ)e−2v(r) + 2β2Φ(φ)e−v(r) + U(r)
(
v′2(r)− φ′2(r)

)}
δgty(r)

− 2ρe−v(r)U(r)
{
δa′y(r)−Bδgrx(r)

}
− 2BZ(φ)e−v(r)

{
ζxa(r)− Ex

}
,

δgrx =
1

U(r)
(
B2Z(φ)+β2ev(r)Φ(φ)

)[Bρe−v(r)δgty+BZ(φ)U(r)δa′y(r)

+kΦ(φ)U(r)ev(r)δχ′x(r)−ρEx+
(
ρa(r)−ev(r)U ′(r)+ev(r)U(r)v′(r)

)
ζx

]
,

δgry =
1

U(r)
(
B2Z(φ)+β2ev(r)Φ(φ)

)[−Bρe−v(r)δgtx−BZ(φ)U(r)δa′x(r)

+kΦ(φ)U(r)ev(r)δχ′y(r)−ρEy+
(
ρa(r)−ev(r)U ′(r)+ev(r)U(r)v′(r)

)
ζy

]
,

(2.27)
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we end up with a relatively simple expression for the heat current;

Qi(∞) = Qi(rh) +BεijEj

∫ ∞
r0

dr′e−v(r′)Z
(
φ(r′)

)
− 2Bεijζj

∫ ∞
r0

dr′a(r′)e−v(r′)Z
(
φ(r′)

)
≡ Qi(rh) +BεijEjΣ1 +BεijζjΣ2 . (2.28)

In summary, we have two boundary currents:

J i(∞) = J i(rh) +BεijζjΣ1 , (2.29)

Qi(∞) = Qi(rh) +BεijEjΣ1 +BεijζjΣ2 , (2.30)

where Qi(rh) and J i(rh) are functions at horizon, which can be further simplified by the

regularity condition at the black hole horizon [8, 34]

δai(r) ∼ −
Ei

4πT
ln(r − rh) + · · · ,

δgti(r) ∼ δg(h)
ti + O

(
(r − rh)

)
+ · · · ,

δgri(r) ∼ e−v(rh) δg
(h)
ti

U(rh)
+ · · · ,

δχi(r) ∼ χ(h)
i + O

(
(r − rh)

)
+ · · · .

(2.31)

Thus, the boundary currents yield

J i(∞) = −(ρ δije−vh +Bεije−vhZh)δg
(h)
tj + δijEjZh +BεijζjΣ1 , (2.32)

Qi(∞) = −4πTδijδg
(h)
tj +BεijEjΣ1 +BεijζjΣ2 , (2.33)

where vh = v(rh) and Zh = Z
(
φ(rh)

)
. δg

(h)
ti also can be replaced by the horizon data

using the equations of motion (2.27). The near horizon expansion of the last two equations

in (2.27) gives

δg
(h)
tx =

evh

B2Zh + β2evhΦh

[
Bρe−vhδg

(h)
ty −BZhEy − ρEx − 4πevhTζx

]
, (2.34)

δg
(h)
ty =

evh

B2Zh + β2evhΦh

[
−Bρe−vhδg(h)

tx −BZhEx − ρEy − 4πevhTζy
]
, (2.35)

which, in turn, give us two algebraic equations for δg
(h)
ti of which solutions are

δg
(h)
ti =

evh

B2(ρ2 +B2Z2
h + 2β2evhZhΦh) + β4e2vhΦ2

h

×
[
− β2ρevhΦhEi −B(ρ2 +B2Z2

h + β2evhZhΦh)εij Ej

+ 4πTevh(B2Zh + β2evhΦh) ζi − 4πTevhBρεij ζj
]
,

(2.36)

where Φh ≡ Φ
(
φ(rh)

)
. Finally, the conductivities are obtained by differentiating the bound-

ary currents (J i(∞), Qi(∞)) with respect to the external electric field (Ei) or the thermal
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gradient (ζi):

σ̂ij =
∂J i(∞)

∂Ej
= −(ρ δike−vh +Bεike−vhZh)

∂δg
(h)
tk

∂Ej
+ Zh δ

ij , (2.37)

α̂ij =
1

T

∂J i(∞)

∂ζj
= −(ρ δike−vh +Bεike−vhZh)

1

T

∂δg
(h)
tk

∂ζj
+ εij

B

T
Σ1 , (2.38)

ˆ̄αij =
1

T

∂Qi(∞)

∂Ej
= −4πδik

δg
(h)
tk

∂Ej
+ εij

B

T
Σ1 , (2.39)

ˆ̄κij =
1

T

∂Qi(∞)

∂ζj
= −4πδik

δg
(h)
tk

∂ζj
+ εij

B

T
Σ2 , (2.40)

where we put hats on the conductivities to distinguish them from the ones where magneti-

zation current are taken out [29]. More explicitly, with (2.36), the general DC conductivity

formulas are given as follows.

(i) The electric conductivity and Hall conductivity:

σ̂xx = σ̂yy =
evhβ2Φh(ρ2 +B2Z2

h + evhβ2ZhΦh)

B2ρ2 + (B2Zh + evhβ2Φh)2
, (2.41)

σ̂xy = −σ̂yx =
Bρ(ρ2 +B2Z2

h + 2evhβ2ZhΦh)

B2ρ2 + (B2Zh + evhβ2Φh)2
. (2.42)

(ii) The thermoelectric conductivity:

α̂xx = α̂yy =
4πe2vhβ2ρΦh

B2ρ2 + (B2Zh + evhβ2Φh)2
, (2.43)

α̂xy = −α̂yx =
4πevhB(ρ2 +B2Z2

h + evhβ2ZhΦh)

B2ρ2 + (B2Zh + evhβ2Φh)2
+
B

T
Σ1 , (2.44)

ˆ̄αij = α̂ij . (2.45)

(iii) The thermal conductivity:

ˆ̄κxx = ˆ̄κyy =
16π2Te2vh(B2Zh + evhβ2Φh)

B2ρ2 + (B2Zh + evhβ2Φh)2
, (2.46)

ˆ̄κxy = −ˆ̄κyx =
16π2Te2vhBρ

B2ρ2 + (B2Zh + evhβ2Φh)2
+
B

T
Σ2 , (2.47)

where

Σ1 =

∫ ∞
rh

dr′e−v(r′)Z
(
φ(r′)

)
, (2.48)

and

Σ2 = −2

∫ ∞
rh

dr′a(r′)e−v(r′)Z
(
φ(r′)

)
. (2.49)
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The B
T Σi terms in (2.44) and (2.47) come from the contributions of the magnetization

current and the energy magnetization current, which should be subtracted [29]. In par-

ticular, in the case of the dyonic black hole in section 3.2,3 Σ1 = M
B and Σ2 = 2(ME−µM)

B ,

where M is the magnetization and ME is the energy magnetization. The relation between

Σi and the magnetizations are confirmed by (3.20). Therefore, the DC conductivities

(σij , αij , κ̄ij) read

σij = σ̂ij , (2.50)

αij = α̂ij − B

T
Σ1ε

ij , (2.51)

κ̄ij = ˆ̄κij − B

T
Σ2ε

ij , (2.52)

which are expressed in terms of the black hole horizon data.

2.1 Nernst effect

The thermoelectric conductivites play an important role in understanding high Tc super-

conductors. In the presence of a magnetic field, a transverse electric field can be generated

by a transverse or longitudinal thermal gradient. The former is called the ‘Seebeck’ effect

and the latter is called the ‘Nernst’ effect.

The electric current, ~J , can be written in terms of the external electric field and the

thermal gradient as follows;
~J = σ ~E − α∇~T , (2.53)

where σ and α are 2× 2 matrices. In the absence of the electric current,

Ei = (σ−1α)i
j
(∇~T )j . (2.54)

Based on the definition of the Nernst effect, the Nernst signal (eN ) is defined as

eN = −(σ−1 · α)y
x
. (2.55)

The Nernst signal in cuprates shows different features from conventional metals, so it is

one of the important observables in understanding high Tc superconductors. For example,

in conventional metals the Nernst signal is linear in B, while in the normal state of a

cuprate it is bell-shaped as a function of B. See, for example, figure 12 in [35]. At a fixed

B, the Nernst signal increases as temperature decreases in the normal state of a cuprate

and, in turn, near the superconducting phase transition the Nernst signal becomes much

stronger than conventional metals as shown in figure 20 in [35].

Now we have the general formulas for the DC transport coefficients, (2.50) and (2.51),

we can compute a general Nernst signal (2.55)

eN =
4πe2vhβ2Z2

hΦhB

ρ4 + 2evhβ2ρ2ZhΦh + Z2
h(B2ρ2 + e2vhβ4Φ2

h)
, (2.56)

3The magnetization and energy magnetization current in a general setup were computed in [39].
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which is expressed in terms of the black hole horizon data. By playing with the parameters,

Zh, vh, and Φh, we can simulate eN by the formula (2.56). It may guide us in constructing

more realistic models showing aforementioned cuprate-like properties and furthermore in

understanding the physics of strongly correlated systems.

There are two comments on general features of the Nernst signal (2.56). First, it is

proportional to β2 for small value of β and it goes as 1/β2 for large value of β. It has the

maximum at β = βmax

β2
max =

e−vhρ
√
ρ2 +B2Z2

h

ZhΦh
. (2.57)

Second, in the limit, ρ→ 0, the Nernst signal becomes

eN
∣∣
ρ=0

=
4πB

β2Φh
. (2.58)

In this regime, relevant to the quantum critical point, the Nernst signal is proportional to

the inverse of Φh at fixed B and β. Because the Nernst signal increases as temperature

decreases in the normal phase of cuprates [35], to have a cuprate-like property, Φh should

decrease as temperature decreases. This will be a restriction on Φh in model building.

3 Example: dyonic black branes with momentum relaxation

3.1 Model with massless axions

As an explicit model, we consider the Einstein-Maxwell system with massless axions. The

action is given by (2.1) with the following choices

φ = 0 , Φ1 = Φ2 = 1 , V (φ) = −6/L2, Z(φ) = 1 , (3.1)

where L is the AdS radius which will be set to be 1 from now on. Adding the Gibbons-

Hawking term, we start with

S0 =
1

16πG

∫
M

d4x
√
−g
[
R+ 6− 1

4
F 2 − 1

2

2∑
I=1

(∂χI)
2

]
− 1

8πG

∫
∂M

d3x
√
−γK , (3.2)

where γ is the determinant of the induced metric on the boundary. K is the trace of

the extrinsic curvature tensor KMN
4 defined by −γPMγ

Q
N∇(PnQ), where n is the outward-

pointing normal vector5 to the boundary (∂M) which is at r = Λ. From here, for simplicity,

we also take 16πG = 1. For the holographic renormalization, we have to add a counter

action

Sc =

∫
∂M

dx3√−γ
(
− 4−R[γ] +

1

2

2∑
I=1

γµν∂µχI∂νχI

)
, (3.3)

4Where M,N = 0, 1, 2, r are the indices for bulk and µ, ν = 0, 1, 2 are the indices for the boundary

coordinates.
5In our case, nM =

(
0, 0, 0, 1/

√
U(r)

)
. See (3.7).
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and the finite renormalized on-shell action is

Sren = lim
Λ→∞

(S0 + Sc)on-shell . (3.4)

Since the boundary terms do not change the equations of motion, the equations (2.2)–(2.5)

are valid and yield, with (3.1),

RMN =
1

2
gMN

(
R+6− 1

4
F 2− 1

2

2∑
I=1

(∂χI)
2

)
+

1

2

∑
I

∂MχI∂NχI+
1

2
FM

PFNP , (3.5)

∇MFMN = 0 , ∇2χI = 0 . (3.6)

We want to find a solution of the equations of motion, describing a system at finite

chemical potential (µ) and temperature (T ) in an external magnetic field (B) with mo-

mentum relaxation. It turns out the dyonic black brane solution modified by the axion

hair (2.7) does the job. I.e.

ds2 = −U(r)dt2 +
1

U(r)
dr2 + r2(dx2 + dy2) ,

U(r) = r2 − β2

2
− m0

r
+
µ2 + q2

m

4

r2
h

r2
,

a(r) = µ

(
1− rh

r

)
, B = qmrh ,

χ1 = βx , χ2 = βy ,

(3.7)

where rh is the location of the horizon and

m0 = r3
h

(
1 +

µ2 + q2
m

4r2
h

− β2

2r2
h

)
. (3.8)

3.2 Thermodynamics

To obtain a thermodynamic potential for this black brane solution, we compute the on-

shell Euclidean action (SE) by analytically continuing to the Euclidean time (τ) of which

period is the inverse temperature

t = −iτ , SE = −iSren , (3.9)

where SE is the Euclidean action. By a regularity condition at the black brane horizon the

temperature of the system is given by the Hawking temperature,

T =
U ′(rh)

4π
=

1

4π

(
3rh −

µ2 + q2
m + 2β2

4rh

)
, (3.10)

and the entropy density is given by the area of the horizon,

s = 4πr2
h . (3.11)
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Plugging the solution (3.7) into the Euclidean renormalised action (3.4), we have the

thermodynamic potential (Ω) and its density (W):

SE =
V2

T
(−m0 − β2rh + q2

mrh) ≡ V2

T
W ≡ Ω

T
, (3.12)

where V2 =
∫

dxdy. The potential density W can be expressed in terms of the thermody-

namic variables as

W =
Ω

V2
= −r3

h −
rh
4

(µ2 + 2β2 − 3q2
m)

= ε− sT − µρ ,
(3.13)

where ε and ρ are the energy density and the charge density respectively. The second line

is obtained by using the relation

ε = 2m0 , ρ = µrh , (3.14)

which is derived as follows. We want to compute one-point functions of the boundary

energy-momentum tensor (Tµν), current (Jµ) and scalar operators (OI) dual to χI . Our

metric is of the following form

ds2 = N2dr2 + γµν(dxµ + V µdr)(dxν + V νdr) , (3.15)

where N and Vµ are the lapse function and the shift vector. The extrinsic curvature

tensor has non-vanishing components, Kµν = − 1
2N (∂rγµν −DµVν −DνVµ), where Dµ is a

covariant derivative of the boundary metric γµν . In terms of aforementioned variables, we

define ‘conjugate momenta’ of the fields as

Πµν ≡
δSren

δγµν
=
√
−γ
(
Kµν −Kγµν − 2γµν +Gµν [γ]− 1

2
∂µχI∂νχI +

1

4
γµν∇χI · ∇χI

)
,

Πµ ≡ δSren

δAµ
= −N

√
−γ F rµ, ΠI ≡

δSren

δχI
=
√
−γ (−N∇rχI −�γχI) . (3.16)

Thus, the one point functions are

〈Tµν〉 = lim
r→∞

2r√
−γ

Πµν =

2m0 0 0

0 m0 0

0 0 m0

 ,

〈Jµ〉 = lim
r→∞

r3

√
−γ

Πµ = (µrh, 0, 0) , 〈OI〉 = lim
r→∞

r3

√
−γ

ΠI = 0 , (3.17)

which yield (3.14).

Since the pressure P = −W, (3.13) becomes a Smarr-like relation

ε+ P = sT + µρ . (3.18)

Notice that the pressure is not equal to 〈Txx〉 since

P = 〈Txx〉+ rhβ
2 − rhq2

m . (3.19)
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The magnetization (M) and the energy magnetization (ME) are

M = −
(
δΩ

δB

)
= −qm , ME = −

(
δΩ

δBE

)
= −1

2
µqm , (3.20)

where δB and δBE are defined by a linearized solution6

δgty = xU(r)δBE , δAy = x

(
δB + µδBE

rh
r

)
,

δAt = − B

2r2
h

(
1−

r2
h

r2

)
δBE −

B

µr2
h

(
1− rh

r

)
δB .

We find the first law of thermodynamics

δE = Tδs+ µδρ− rhδ(β2)−MδB , (3.21)

by combining the variation of the first line of (3.13) with respect to T , µ, β2 and B:

δW = −MδB − sδT − rhδ(β2)− ρδµ , (3.22)

and the variation of (3.18).

3.3 DC conductivities: Hall angle and Nernst effect

In this section we study the DC conductivities of the dyonic black brane with momentum

relaxation. Because we have derived the general formulas in section 2, we only need to

plug model-dependent information (3.1) and (3.7) into (2.50)–(2.52).

The electric conductivities yield

σxx = σyy = β2r2
h

B2 + r2
h(µ2 + β2)

r2
hµ

2B2 + (B2 + r2
hβ

2)2
, (3.23)

σxy = −σyx = Brhµ
B2 + r2

h(µ2 + 2β2)

r2
hµ

2B2 + (B2 + r2
hβ

2)2
. (3.24)

In the clean limit, β → 0, these boil down to

σxx = σyy = 0 , σxy = −σyx =
rhµ

B
=

ρ

B
,

where temperature dependence drops out and we recover the results expected on general

grounds from Lorentz invariance, agreeing with [28]. In the limit B → 0, the expressions

become

σxx = σyy = 1 +
µ2

β2
, σxy = σyx = 0 ,

6For details we refer to appendix C of [29].
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(a) σxx (b) αxx (c) κ̄xx

(d) σxy (e) αxy (f) κ̄xy

Figure 1. β/T and B/T dependence of DC conductivities at fixed µ/T = 4.

which reproduces the result in [16, 19]. The thermoelectric and thermal conductivities read

αxx = αyy =
4πr5

hβ
2µ

r2
hµ

2B2 + (B2 + r2
hβ

2)2
, (3.25)

αxy = −αyx = 4πr3
hB

B2 + r2
h(µ2 + β2)

r2
hµ

2B2 + (B2 + r2
hβ

2)2
, (3.26)

κ̄xx = κ̄yy = 16πr4
hT

B2 + r2
hβ

2

r2
hµ

2B2 + (B2 + r2
hβ

2)2
, (3.27)

κ̄xy = −κ̄yx
16π2r5

hµTB

r2
hµ

2B2 + (B2 + r2
hβ

2)2
. (3.28)

To see the effect of β and B on the conductivities, the formulas (3.23)–(3.28) are not

so convenient since rh is a complicated function of T , B, µ, and β, as expressed in (3.10).

Therefore, we make plots of conductivities in figure 1, where we scaled the variables by T

and fixed µ/T = 4. The σxx, αxx, and κ̄xx are qualitatively similar; the B dependence

at fixed β is monotonic, while the β dependence at fixed B is not. The σxy, αxy, and

κ̄xy are similar; the β dependence at fixed B is monotonic, while the B dependence at

fixed β is not. See figure 4 for the cross sections at B/T 2 = 1. As the chemical potential

increases, the electric and thermoelectric conductivity generally increases while its overall

2-dimensional shape does not change qualitatively. However, the thermal conductivities

behave differently; κ̄xx broadens while κ̄xy is sharpened.
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(a) B-β dependence at µ/T = 4 (b) β-T dependence at B/µ = 1

Figure 2. Hall angle θH = arctan(σxy/σxx).

The Hall angle (θH) is defined by the ratio of the electric conductivities:

tan θH ≡
σxy

σxx
=

µB

rhβ2

B2 + r2
h(µ2 + 2β2)

B2 + r2
h(µ2 + β2)

, (3.29)

which agrees to the result reported in [23]. As shown in figure 2, the Hall angle θH ranges

from π/2 to 0. The angle increases as B increases or β decreases (figure 2(a)). In the

strange metal phase, we are interested in the temperature dependence of the Hall angle,

which is proportional to 1/T 2. In our case, we numerically found that the Hall angle ranges

between 1/T 0 and 1/T 1 (figure 2(b)). In the large T regime, the Hall angle always scales

as 1/T . It can be seen also from the formula (3.29), where if T is large compared to the

other scales, rH ∼ T so tan θH ∼ 1/T .

The Nernst signal (2.56) yields

eN =
4πr2

hβ
2B

µ2B2 + r2
h(µ2 + β2)2

. (3.30)

As discussed in section 2.1, the Nernst signal is linear in B in conventional metals while

it becomes bell-like in the normal state of cuprates [35]. To see whether our model can

capture this feature, we make a three dimensional plot of the Nernst signal as a function of

β/T and B/T 2 at fixed µ/T = 1 in figure 3, where (b) is the cross section of (a) at fixed β.

The blue line is almost straight while the green and red ones are bell-like. Therefore, we

find that our system shows the transition from the normal metal (blue line) to cuprate-like

state (green and red) as β decreases, in the Nernst signal perspective. The green and

red curves are similar to figure 12 in [35] and it was proposed that the bell shape can be

explained by the dynamics of the vortex liquid in non-superconducting phase [36, 37]. It

was also interpreted as an evidence of the pseudo-gap phase [35]. If we take this point of

view, our model might be relevant to the pseudo-gap phase.

One may wonder if the blue line is qualitatively similar to the green and red ones

for higher B/T 2. As B/T 2 increases the blue line reaches the maximum and has almost

plateaued out, which is not bell-shaped. Furthermore, the numerical value of B/T 2 at the

maximum eN (∼ 60) is about 1600, which is too big to consider, compared to other scales.
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(a) β/T and B/T 2 dependence of the

Nernst signal at µ/T = 1

10 20 30 40 50

B

T
2

5

10

15

eN

(b) The cross sections of (a) at β/T = 0.5, 1, 4

(red, green, blue)

Figure 3. Nernst signal.

4 Numerical AC conductivities

So far we have discussed the DC conductivities. In this section, we will consider the AC

conductivities. To be concrete, we continue to investigate the model in the previous section,

namely, the dyonic black brane with the momentum relaxation by the axion fields.

4.1 Equations of motion and on-shell action

In section 2 and 3, we have derived the DC conductivity in a gauge gri 6= 0. In this section,

to compute the AC conductivity, we will work in a gauge δgri = 0. The physical result

should not be changed by this gauge choice.7 Indeed, we will show the zero frequency limit

of the AC conductivity (with δgri = 0) agrees to the DC conductivity (with δgri 6= 0) in

section 2. It serves as a good consistency check of our numerical method.

To compute conductivities holographically it is consistent to turn on linear fluctuations

of bulk fields, δgti, δAi and δχi at zero momentum in the x and y directions, where i = 1, 2

(or i = x, y). The fields δgti and δAi are related to the heat current and the electric current.

They were introduced in [28] and here we add δχi for momentum relaxation. The fields,

δgti, δAi and δχi, can be expressed in momentum space as

δAi(t, r) =

∫ ∞
−∞

dω

2π
e−iωtai(ω, r) , (4.1)

δgti(t, r) =

∫ ∞
−∞

dω

2π
e−iωtr2hti(ω, r) , (4.2)

δχi(t, r) =

∫ ∞
−∞

dω

2π
e−iωtψi(ω, r) , (4.3)

where r2 in the metric fluctuation (4.2) is introduced to make the asymptotic solution of

hti constant at the boundary (r →∞), for the sake of convenience. From (3.5) and (3.6),

the linearized equations for the Fourier components are given as follows.

7There is a subtle issue on the gauge choice and holographic renormalization. For more details we refer

to [33].

– 15 –



J
H
E
P
0
7
(
2
0
1
5
)
0
2
7

− Einstein equations:

q2
mhti
r4U

+ εij
iωqmaj
r4U

+
β2hti
r2U

+
iβωψi
r2U

− µa′i
r4
− 4h′ti

r
− h′′ti = 0 , (4.4)

εij
iUqma

′
j

r4ω
+
iβUψ′i
r2ω

+ εij
iµqmhtj
r4ω

+
µai
r4

+ h′ti = 0 , (4.5)

− Maxwell equations:

U ′a′i
U

+ εij
iωqmhtj
U2

+
µh′ti
U

+
ω2ai
U2

+ a′′i = 0 , (4.6)

− Scalar equations:
U ′ψ′i
U
− iβωhti

U2
+
ω2ψi
U2

+
2ψ′i
r

+ ψ′′x = 0 . (4.7)

Among these eight equations, only six are independent.

Near the black hole horizon (r → 1)8 the solutions are expanded as

hti = (r − 1)ν±+1
(
h

(I)
ti + h

(II)
ti (r − 1) + · · ·

)
,

ai = (r − 1)ν±
(
a

(I)
i + a

(II)
i (r − 1) + · · ·

)
,

ψi = (r − 1)ν±
(
ψ

(I)
i + ψ

(II)
i (r − 1) + · · ·

)
,

(4.8)

where ν± = ±i4ω/(−12 + q2
m + 2β2 + µ2). In order to impose the incoming boundary

condition relevant to the retarded Green’s function [41], we have to take ν = ν+. It turns

out that the 4 parameters a
(I)
i and ψ

(I)
i may be chosen to be independent since h

(I)
ti and

all higher power coefficients can be determined by them.

Near the boundary (r →∞), the asymptotic solutions read

hti = h
(0)
ti +

1

r2
h

(2)
ti +

1

r3
h

(3)
ti + · · · ,

ai = a
(0)
i +

1

r
a

(1)
i + · · · ,

ψi = ψ
(0)
i +

1

r2
ψ

(2)
i +

1

r3
ψ

(3)
i + · · · ,

(4.9)

where the leading terms h
(0)
ti , a

(0)
i , and ψ

(0)
i are independent constants, which fix h

(2)
ti , ψ

(2)
i

completely by the equations of motion. The nontrivial sub-leading terms, h
(3)
µν , a

(1)
µ , and

ψ
(3)
I will be determined by the incoming boundary conditions at the horizon for the given

leading terms, h
(0)
ti , a

(0)
i , and ψ

(0)
i . The leading terms play the role of sources for the

operators of which expectation values are related to h
(3)
µν , a

(1)
µ , and ψ

(3)
I respectively.

Expanding the renormalized action (3.4) around the dyonic black brane background

and using the equations of motion, we obtain a quadratic on-shell action:

S(2)
ren = lim

Λ→∞

1

2

∫
r=Λ

d3x

[(
4r3− 4r4√

U(r)

)
δh̃

2
ti−

βr2√
U(r)

δχi
˙
δh̃ti+

r2√
U(r)

δχiδχ̈i

−U(r)δAiδA
′
i+r

4δh̃tiδh̃
′
ti−r2U(r)δχiδχ

′
i−δh̃ti

(
µδAi−

βr2 ˙δχi√
U(r)

)]
,

(4.10)

8From here we set rh = 1 for convenience of numerical analysis.
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where δh̃ti ≡ r−2δgti(t, r), ‘dot’ denotes ∂t and ‘prime’ denotes ∂r. We have dropped the

contributions from the horizon, which is the prescription for the retarded Green’s func-

tion [41]. In particular, with the spatially homogeneous ansatz (4.1)–(4.3), the quadratic

action in momentum space yields

S(2)
ren =

V2

2

∫ ∞
0

dω

2π

(
− µā(0)

i h
(0)
ti − 2m0h̄

(0)
ti h

(0)
ti + ā

(0)
i a

(1)
i − 3h̄

(0)
ti h

(3)
ti + 3ψ̄(0)ψ(3)

)
, (4.11)

where V2 is the two dimensional spatial volume
∫

dxdy. The argument of the variables with

the bar is −ω. We dropped the range (−∞, 0), which is the complex conjugate of (4.11),

to obtain complex two point functions [41].

The on-shell action (4.11) is nothing but the generating functional for the two-point

Green’s functions sourced by a
(0)
i , h

(0)
ti , and ψ(0). We may simply read off a part of the two

point functions from the first two terms in (4.11). The other three terms are nontrivial

and we need to know the dependence of {a(1)
i , h

(3)
ti , ψ

(3)} on {a(0)
i , h

(0)
ti , ψ

(0)}. However, the

linearity of the equations (4.4)–(4.7) makes it easy to find out a linear relation between

{a(1)
i , h

(3)
ti , ψ

(3)} and {a(0)
i , h

(0)
ti , ψ

(0)}. In the following subsection we will explain how to

find such a relationship numerically in a more general setup and apply it to our case.

4.2 Numerical method

A systematic numerical method with multi fields and constraints was developed in [19]

based on [42, 43]. We summarize it briefly for the present case and refer to [19, 33] for

more details. Let us start with N fields Φa(x, r), (a = 1, 2, · · · , N), which are fluctuations

around a background. Suppose that they satisfy a set of coupled N second order differential

equations and the fluctuation fields depend on only t and r:

Φa(t, r) =

∫
dω

(2π)
e−iωtrpΦa

ω(r) , (4.12)

where rp is multiplied such that the solution Φa
ω(r) goes to constant at the boundary

(r →∞). For example, p = 2 in (4.2).

Near horizon (r = 1), solutions can be expanded as

Φa(r) = (r − 1)νa±
(
ϕa + ϕ̃a(r − 1) + · · ·

)
, (4.13)

where we omitted the subscript ω for simplicity and νa+(νa−) corresponds to the incoming

(outgoing) boundary condition. In order to compute the retarded Green’s function we

choose the incoming boundary condition [41]. This choice reduces the number of indepen-

dent parameter from 2N to N . There may be further reductions by Nc if there are Nc

constraint equations. As a result, the number of independent parameter is N −Nc so we

may choose N −Nc initial conditions, denoted by ϕaî (̂i = 1, 2, · · · , N −Nc):

(
ϕa1 ϕ

a
2 ϕ

a
3 . . . ϕ

a
N−Nc

)
=


1 1 1 . . .

1 −1 1 . . .

1 1 −1 . . .
...

...
...

. . .

1 1 1 . . .

 . (4.14)
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Every column vector ϕaî yields a solution with the incoming boundary condition, denoted

by Φa
î(r), which is expanded as

Φa
î(r)→ Sa

î
+ · · ·+

Oa
î

rδa
+ · · · (near boundary) , (4.15)

where Saî are related to the sources, which are the leading terms of î-th solution, and Oa
î

are related to the expectation values of the operators corresponding to the sources (δa ≥ 1).

A general solution constructed by Φa
î(r) is

Φa
in(r) ≡ Φa

î
(r)cî → Sa

î
cî + · · ·+

Oa
î
cî

rδa
+ · · · (near boundary) , (4.16)

with real constants cî. We want to identify Sa
î
cî with the independent sources Ja but if

there are constraints, it is not possible since a > î. However, in this case, there may be Nc

other solutions corresponding to some residual gauge transformations [19, 33]

Φa
ī(r)→ Saī + · · ·+

Oa
ī

rδa
+ · · · (near boundary) , (4.17)

where ī runs from N −Nc +1 to N . This extra basis set, Φa
c(r) = Φa

ī
cī, generates a general

solution together with the ingoing solutions.

In our case, N = 6 and Nc = 2, which corresponds to the constraints gri = 0. There

are two sets of additional constant solutions of the equations of motion (4.4)–(4.7)

hti = h0
ti , ai = −

iqmεijh
0
tj

ω
, χi =

iβh0
ti

ω
, (4.18)

where h0
ti is arbitrary constant and i, j = 1, 2. Therefore, the explicit expression for Sa

ī
is

Saī =
(
Sa5 Sa6

)
=



0 −i qmω
i qmω 0

1 0

0 1

iβω 0

0 iβω


.

These can be understood as residual gauge transformations keeping gri = 0, which are

generated by the vector fields, of which non-vanishing components are ξx = εxe−iωt and

ξy = εye−iωt (εi are constants). I.e. LξAi = −qmεijξj , Lξgti = −iωr2δijξ
j and Lξχi =

βδijξ
j .

Therefore, the most general solution reads

Φa
in(r) + Φa

c(r) ≡ Ja + · · ·+ Ra

rδa
+ · · · , (4.19)

where we defined Ja and Ra. For arbitrary sources Ja we can always find cI

cI = (S−1)IaJ
a, (4.20)
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where I = 1, . . . , N . The corresponding response Ra is expressed as

Ra = Oa
Ic
I = Oa

I(S−1)I bJ
b. (4.21)

The general on-shell quadratic action in terms of the sources and the responses can be

written as

S(2)
ren =

V2

2

∫ ∞
0

dω

(2π)

[
J̄aAabJb + J̄aBabRb

]
, (4.22)

where A and B are regular matrices of order N and the argument of J̄a is −ω. For example,

the action (4.11) is the case with:

Ja =



a
(0)
x

a
(0)
y

h
(0)
tx

h
(0)
ty

ψ
(0)
x

ψ
(0)
y


, Ra =



a
(1)
x

a
(1)
y

h
(3)
tx

h
(3)
ty

ψ
(3)
x

ψ
(3)
y


, A =

0 −µ 0

0 −2m0 0

0 0 0

⊗12 , B =

1 0 0

0 −3 0

0 0 3

⊗12 ,

(4.23)

where the index ω is suppressed and 12 is the 2×2 unit matrix. Plugging the relation (4.21)

into the action (4.22) we have

S(2)
ren =

V2

2

∫ ∞
0

dω

(2π)
J̄a
[
Aab + BacOc

I(S−1)I b
]
Jb, (4.24)

which yields the retarded Green’s function

Gab = Aab + BacOc
I(S−1)I b . (4.25)

In summary, to compute the retarded Green’s function, we need four square N × N
matrices, A, B, S and O. The matrices A and B can be read off from the action (4.22), which

is given by the on-shell expansion near the boundary. The matrices S and O are obtained

by solving a set of the differential equations. Part of them comes from the solutions with

incoming boundary conditions and the others may be related to the constraints. Notice

that the Green’s functions do not depend on the choice of initial conditions (4.14).

In the case of the dyonic black branes in section 4.1, we may construct a 6× 6 matrix

of the retarded Green’s function. We will focus on the 4 × 4 submatrix corresponding to

a
(0)
i and h

(0)
ti in (4.9), (

GijJJ GijJT
GijTJ G

ij
TT

)
, (4.26)

where every Gijαβ is a 2× 2 retarded Green’s function with i = x, y for given α and β. The

sub-induces α, β denote the operators corresponding to the sources. I.e. the a
(0)
i is dual to

the electric current J i and the h
(0)
ti is dual to the energy-momentum tensor T ti. From the

linear response theory, we have the following relation between the response functions and

the sources: (
〈J i〉
〈T ti〉

)
=

(
GijJJ GijJT
GijTJ G

ij
TT

)(
a

(0)
j

h
(0)
tj

)
, (4.27)
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where 〈J i〉, 〈T ti〉, a(0)
j and h

(0)
tj are understood as 2× 1 column matrices, with i = x, y. We

want to relate these Green’s functions to the electric (σ̂), thermal (ˆ̄κ), and thermoelectric

(α̂, ˆ̄α) conductivities defined as(
〈J i〉
〈Qi〉

)
=

(
σ̂ij α̂ijT

ˆ̄αijT ˆ̄κijT

)(
Ej

−(∇jT )/T

)
, (4.28)

where Qi is a heat current, Ei is an electric field and ∇iT is a temperature gradient along

the i direction. Notice that the electric and heat current here contain the contribution

of magnetization, so we use the conductivities with hat ((2.37)–(2.40)). By taking into

account diffeomorphism invariance [1, 2, 19], (4.28) can be expressed as(
〈J i〉

〈T ti〉 − µ〈J i〉

)
=

(
σ̂ij α̂ijT

ˆ̄αijT ˆ̄κijT

)(
iω(a

(0)
j + µh

(0)
tj )

iωh
(0)
tj

)
. (4.29)

From (4.27) and (4.29) with the magnetization subtraction (2.50)–(2.52), the conductivities

are expressed in terms of the retarded Green’s functions as follows(
σij αijT

ᾱijT κ̄ijT

)
=

 − iGij
JJ
ω

i(µGij
JJ−G

ij
JT )

ω
i(µGij

JJ−G
ij
TJ )

ω − i(Gij
TT−G

ij
TT (ω=0)−µ(Gij

JT +Gij
TJ−µG

ij
JJ ))

ω

− B
T

(
0 Σ1ε

ij

Σ1ε
ij Σ2ε

ij

)
.

(4.30)

4.3 AC conductivities and the cyclotron poles

In this section we present our numerical results. Some examples of the AC electric con-

ductivity are shown in figure 5 and 8; the thermoelectric conductivity is in figure 6; and

the thermal conductivity is in figure 7.

Before discussing the AC nature of the conductivities, we first examine the DC limit

(ω → 0) of the AC conductivities and compare them with the analytic expressions derived

in section 3.3. The comparisons are shown in figure 4, where all conductivities are plotted

as a function of β/T with the other parameters fixed; µ/T = 4 and B/T 2 = 1. The solid

lines were drawn by the analytic expressions, (3.23), (3.24), (3.25)–(3.28) and the red dots

were read off from the AC numerical results in the limit ω → 0. Both results agree, which

serves as a supporting evidence for the validity of our analytic and numerical methods.

Indeed this agreement is not so trivial in technical perspective. In the DC computation we

turned on hri and read off the physics from the horizon data while in the AC computation

we worked in the gauge hri = 0 and considered full evolution in the r-direction.

Let us turn to the AC properties of the conductivities. Figure 5, 6, and 7 show

the β dependence of the electric, thermoelectric, and thermal conductivity respectively.

The dotted lines are the cases for β = 0 and the red, green, blue curves are for β/T =

0.5, 1, 1.5. The red dots at ω = 0 in the real part of the conductivities are the values

given by the analytic formulas (3.23), (3.24), (3.25)–(3.28). They agree to the numerical

AC conductivities in the limit ω → 0. As β increases, when all other scales are fixed, the

curves become flatter, which is expected from stronger momentum relaxation. Notice that

there is no 1/ω pole in the imaginary part of the conductivities even when β = 0. It is
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Figure 4. Agreement of DC analytic formulas (solid curves) obtained in section 3.3 with numerical

results (red dots): DC conductivities vs β/T with µ/T = 4, B/T 2 = 1.
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Figure 5. β dependence of electric conductivities: β/T = 0, 0.5, 1, 1.5 (dotted, red, green, blue)

with µ/T = 1, B/T 2 = 3.

because the gauge field for B (2.6) breaks translation invariance in the same way as the

axion fields do.

There is a peak in the curves in figures 5–7, which is related to the cyclotron resonance

pole, the position of the pole of the conductivity in complex ω plane [29, 30]

ω∗ ≡ ωc − iγ , (4.31)

where the cyclotron frequency ωc is the relativistic hydrodynamic analog of the free particle

case, ωf = eB/mc. However, the resonance due to ω∗ here should be understood to be due

to a collective fluid motion rather than to free particles. A damping γ could be thought

of as arising from interactions between the positively charged current and the negatively

charged current of the fluid, which are counter-circulating. In the hydrodynamic regime

for small B at β = 0, the ω∗ was computed analytically in [30] as follows:

ωc =
ρB

E + P
≡ ω0

c , γ =
B2

g2(E + P)
≡ γ0. (4.32)
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Figure 6. β dependence of thermoelectric conductivities: β/T = 0, 0.5, 1, 1.5 (dotted, red, green,

blue) with µ/T = 1, B/T 2 = 3.
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Figure 7. β dependence of thermal conductivities: β/T = 0, 0.5, 1, 1.5 (dotted, red, green, blue)

with µ/T = 1, B/T 2 = 3.
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Figure 8. B dependence of electric conductivities: B/T 2 = 0.5, 1, 2, 4 (red,orange,green,blue)

with β/T = 1/2, µ/T = 4.

Because β is related to momentum relaxation, it is expected that γ will increase as β

increases. It is indirectly shown in the plots since all curves become flat, which may reflect

the fact the pole goes away from the real ω axis. It turns out that the ωc tends to increase

as β increase, although it is not so clear in the plots. It will be discussed later in figure 10

and the equation (4.34). While in figure 5–7 we focused on the effect of β at fixed B, in

figure 8 we investigated the effect of B at fixed β; the red, orange, green, and blue curves

are for B/T 2 = 0.5, 1, 2, 4 respectively. A relatively big µ/β = 8 has been chosen since the

peak is shaper when µ/β is bigger. We find the peaks of the curves shift towards higher

frequencies as B increases, which is consistent with the hydrodynamic analysis (4.32).

To see the cyclotron pole directly in complex ω plane, we introduce the following

combination

σ± = σxy ± iσxx, (4.33)

for easy comparison with [29, 30]. The density plots of |σ+| in complex ω plane are shown

in figure 9. Figure 9(a),(b),(c) are the cases with β = 0 and 9(d),(e),(f) are the cases with
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(a) qm/T = 0, µ/T = 12.5 (b) qm/T = 8.9, µ/T = 8.9 (c) qm/T = 12.5, µ/T = 0

(d) qm/T = 0, µ/T = 12.5 (e) qm/T = 8.9, µ/T = 8.9 (f) qm/T = 12.5, µ/T = 0

Figure 9. A density plot of |σ+| in complex ω plane: white areas correspond to poles and dark

areas are zeroes of σ+. β = 0 for (a)(b)(c) and β/T = 10 for (d)(e)(f).

β/T = 10. We choose µ and qm such that q2
m + µ2 to be constant. First, at β = 0 we

recover the result of [30].9 White areas correspond to poles and dark areas are zeroes of σ+.

There is a symmetry: µ→ qm and qm → −µ at β = 0 inherited from the electromagnetic

duality of the bulk theory [30]. Since this bulk duality holds at finite β we expect the

same symmetry is preserved. It is demonstrated in figure 9(d)(e)(f); the figure (d) and (f)

are symmetric under the exchange of the white and dark region. The finite β shifts the

position of the poles to the negative imaginary direction. This implies the width of the

peak increases at real ω axis as discussed previously.

The magnetic field dependence of the cyclotron poles at different values of β is shown

in figure 10, where (a) and (b) show the real part (ωc) and the imaginary part (−γ)

respectively. The gray, red, green, and blue dots are the numerical results for β = 0, 2, 3, 4

respectively, while the black dashed line is the analytic result at β = 0 for small B from

the hydrodynamic analysis (4.32). At β = 0, our numerical result (gray dots) agrees to [30]

and also fits well to the hydrodynamic analysis (black dashed line) for small magnetic field.

We investigated how ω∗ changes as β is introduced. Based on the red, green, and blue dots

in figure 10 and additional similar numerical data for different parameters, we found the

following relation at small B

ω∗ = ωc − iγ = ω0
c + c1β

2B − i(γ0 + c2β
2) , (4.34)

9Our numerical values of µ and qm are different from [30] due to convention difference.
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Figure 10. The magnetic field dependence of the position of the cyclotron resonance pole: β =

0, 2, 3, 4 (gray, red, green blue). The dotted lines are the results by the hydrodynamic analysis (4.32).

where ω0
c and γ0 are defined in (4.32). It seems that c1 and c2 are dimensionful constants

independent of β and B. For this formula we focused on small B region where the dots in

figure 10(a) are linear to B. However, at large magnetic field B we numerically found the

tendency that ωc ∼ c3B, where c3 seems independent of β.

In the presence of dissipation, the cyclotron frequency was shown [29] to be changed as

γ → γ +
1

τimp
, (4.35)

while ωc is intact. In our case τimp is proportional to 1/β2 for small β so the shift of the

imaginary part in (4.34) is consistent with the hydrodynamic calculation [29]. However,

our result implies that the cyclotron frequency (ωc) is also shifted by c1β
2B ∼ B/τimp. We

suspect that the analysis in [29], where B/T 2 � 1 is assumed, is valid in the limit c1B is

small. We leave this issue and the analytic justification of the specific form (4.34) for a

future project.

5 Conclusions

In this paper, we have computed the electric, thermoelectric, and thermal conductivity

at finite magnetic field by means of the gauge/gravity duality. First, by considering a

general class of Einstein-Maxwell-Dilaton theories with axion fields imposing momentum

relaxation, we have derived the analytic DC conductivities, which are expressed in terms

of the black hole horizon data. As an explicit model we have studied the dyonic black

hole modified by a momentum relaxation effect. The background solution is analytically

obtained and the AC electric, thermoelectric, and thermal conductivity were numerically

computed. The zero frequency limit of the numerical AC conductivities agree to the DC

formulas. This is a non-trivial consistency check of our analytic and numerical methods

to compute conductivities. Our numerical method can be applied to other cases in which

multiple transport coefficients need to be computed at the same time.

The Nernst signal, the Hall angle, and the cyclotron resonance pole were discussed

following [28–30]. Our general analytic formulas of the Nernst signal can be used to build
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a realistic model and to investigate the universal properties of the model. In particular,

in the dyonic black hole case, the Nernst signal is a bell-shaped curve as a function of the

magnetic field, if momentum relaxation is small. It is similar to an experimental result

in the normal state of cuprates [35], which was speculatively explained by a vortex-liquid

effect [36, 37]. For large momentum relaxation the Nernst signal is proportional to the

magnetic field, which is a typical property of conventional metals. The Hall angle for the

dyonic black hole was computed explicitly. The Hall angle ranges between 1/T 0 and 1/T 1

and scales as 1/T for large T . However, in the strange metal phase, it was known that the

Hall angle is proportional to 1/T 2. The cyclotron poles (ω∗) we found are consistent with

the hydrodynamic results at β = 0 [29, 30]. They are shifted by momentum relaxation

(β 6= 0) and our numerical analysis suggests the specific dependence of the cyclotron poles

on B and β, (4.34), when B is small. If B is large it was proposed that ωc ∼ c3B with

c3 independent of β. We plan to investigate the properties of the cyclotron poles in more

detail both numerically and analytically.

It is important to compare our AC conductivities with the general expressions based

on the memory matrix formalism [40, 44]. It would be also interesting to compare our AC

conductivity results with [45], where the AC electric conductivities have been studied at

finite magnetic field in the probe brane set up, focusing on the transport at quantum Hall

critical points [46]. The metal phase of our model at B = 0 does not have the property of

linear-T resistivity, so it is worthwhile to start with the models having that property and

then investigate the Hall angle and the Nernst effect in those models.
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