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We estimate the CKM matrix elements in the recently proposed minimal model, anti-SU(7) GUT for 
the family unification, [ 3 ] + 2 [ 2 ] + 8 [ ̄1 ] + (singlets). It is shown that the real angles of the right-
handed unitary matrix diagonalizing the mass matrix can be determined to fit the Particle Data Group 
data. However, the phase in the right-handed unitary matrix is not constrained very much. At present, 
there are three classes of possible CKM parametrizations, δCKM = α, β , or γ of the unitarity triangle. 
For the choice of δCKM = α, it is easy to show that the phase is close to a maximal one, which has a 
parametrization-independent meaning.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

At present, the unitarity triangle is determined with a very high precision such that any flavor unification models can be tested 
against it. Therefore, we attempt to see whether the recently proposed unification of grand unification families (UGUTF) based on anti-
SU(7) [1] is ruled out or not, from the determination [2] of the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements [3–6]. A simple CKM 
analysis can be performed in the Kim–Seo (KS) parametrization [7] where only complex phase gives the invariant Jarlskog phase itself [8]. 
This phase is called the CKM phase δCKM.

Most family unification models assume a factor group G f in addition to the standard model (SM) or grand unification (GUT), where 
for G f continuous symmetries such as SU(2) [9], SU(3) [10], or U(1)’s [11], and discrete symmetries such as S3 [12], A4 [13], �96 [14], 
Z12 [15] have been considered. However, a true unification of families in the sense that the couplings of the family symmetry are unified 
with the three gauge couplings of SM has started with the seminal paper by Georgi [16], starting from an SU(N) GUT [17,18]. Along this 
line, a UGUTF based on SU(7) × U(1)n was suggested [1]. It is derived from string compactification, and contains anti-SU(5) subgroup rep-
resentations of sixteen chiral fields for one family. These are 10+1/5 (dc, u, d, N0), 5−3/5 (dc, νe, e), and 1+5/5 (e+) [19,20]. It is comforting 
that a plethora of anti-SU(5) or flipped-SU(5) GUTs can be derived in string compactifications [21,22].

The anti-SU(7) solution of the family problem is to put all fermion representations in

�[ABC] + 2�[AB] + 8�[A] + singlets ≡ 35 ⊕ 2 × 21 ⊕ 8 × 7 + 1′s, (1)

where the indices (A, B, C = 1, 2, . . . , 7) inside square brackets imply anti-symmetric combinations, and the bold-faced numbers are the 
dimensions of representations. Let the SU(5) indices of flipped-SU(5) be a, b, c = 1, 2, . . . , 5, the color indices α = 1, 2, 3, and weak indices 
i = 4, 5. Representations of Eq. (1) are those of SU(7). Breaking anti-SU(7) down to the anti-SU(5), �[ABC] → �[abc], �[ab6], �[ab7] , resulting 
in one 10, and 2 �[AB] → 2 �[ab] , resulting in two 10’s. Thus, we obtain three 10’s in the flipped SU(5). For 5’s of anti-SU(5), they arise 
from �[a67] from �[ABC] , 2�[a6], 2�[a7] from 2�[AB] , making up five 5. For 5’s of anti-SU(5), we obtain 8�[a] ’s from 8�[A] ’s. Thus, the 
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number of remaining 5 chiral fields are 3�[a] . These contain the uc fields of the flipped-SU(5). The flipped-SU(5) singlets contain e+ fields. 
Therefore, for the CKM matrix, we can perform the study on Yukawa couplings based on the non-singlet spectra of Eq. (1).

With U(1)’s, it is possible to assign the electromagnetic charge Q em = 0 for separating the color and weak charges at the location [45], 
which is the key point for realizing the doublet–triplet splitting in the GUT BEH multiplets [1]. The merits of the UGUTF of Eq. (1) are, (i) it 
allows the missing partner mechanism naturally based on a suitable μ parameter [23], (ii) it is obtained from string compactification, and 
(iii) it leads to plausible Yukawa couplings. The first merit has been already discussed in Ref. [1]. The second merit is the following. The 
R-parity in SUSY and the Peccei–Quinn symmetry are greatly used for proton longevity and toward a solution of the strong CP problem 
and cold dark matter [24]. Because of the gravity spoil of such symmetries in general [25,26], discrete gauge symmetries were considered 
in the bottom approach [27,28]. These global symmetries can be discrete subgroups of some gauge group. In the top-down approach, such 
as in models from string compactification, the resulting approximate discrete and global symmetries are automatically allowed since string 
theory describes gravity without such problems [29,30].

In this paper, we focus on the third merit by adopting the spectra obtained in Ref. [1], and explicitly check the model by calculating the 
mixing parameters of the right-handed currents with the measured mass and left-handed CKM parameters as input. Here, we do not use 
the full description of string theory [31], but use just the supergravity couplings including non-renormalizable terms1 suppressed by the 
string scale, Ms . Thus, every nonrenormalizable term introduces an undetermined coefficient of O (1). A great merit of UGUTF is reducing 
the number of couplings [1].

2. Maximal CP violation

It is known that δCKM ≈ 90◦ in the KS and KM parametrizations [4,33]. It is very useful if the CKM matrix itself contains the invariant 
phase δCKM in a visible manner. For this purpose, we use the KS parametrization [7,33],

V KS =
⎛
⎝ c1 s1c3 s1s3

−c2s1 e−iδCKM s2s3 + c1c2c3 −e−iδCKM s2c3 + c1c2s3

−eiδCKM s1s2 −c2s3 + c1s2c3eiδCKM c2c3 + c1s2s3eiδCKM

⎞
⎠ . (2)

The invariant Jarlskog phase appears in all Jarlskog triangles, not necessarily at the origin. Let us take, as an illustration purpose, α 	
90o = 2π

4 , β 	 22.5o = 2π
16 , and γ 	 67.5o = 2π

16 × 3 which are within the experimental bounds. If these phases appear from some ZN

symmetry, we can choose three kinds of N depending on which angle is used for δCKM. These discrete values of α, β , and γ can be 
obtained theoretically, as done in Ref. [34].

Note that J is given as JKS = Im V ∗
31 V ∗

22 V ∗
13 = c1c2c3s2

1s2s3 sinα = O (λ6–λ7) in the KS parametrization and JCK = Im V ∗
31 V ∗

22 V ∗
13 =

c12c2
13c23s12s13s23 sinγ = O (λ6–λ7) in the CK parametrization. If the Cabibbo angle θC = s1c3 = s12c13 is fixed, J/ sin θC = c1c2s1s2s3 ×

sinα = c12c13c23s13s23 sinγ . For a numerical study, we can choose a vertical Jarlskog triangle of the first and second columns, where two 
O (λ) side lengths are |c1c3s1|, |c2s1(c1c2c3 + s2s3e−iα)|, and an O (λ5) side length is eiα s1s2|(c1c3s2 − c2s3e−iα)| with the phase explicitly 
written for the O (λ5) side to be rotated freely. The corrected area depending on θ2, θ3 and α is J/c1 sin2 θC = 1

2 sin(2θ2) tan(θ3) sinα. For 
given sin 2θ2 and tan θ3, we can rotate α to 90o to obtain the largest δCKM since in our choice of α ∼ 90o is allowed. We cannot give this 
argument for δCKM = γ , where γ is far from 90o. However, by varying the real and phase parameters, one should obtain the maximality 
in the vicinity of γ 	 67.5o, since J must be the same in any CKM parametrizations.

If we consider only the CKM matrix, there are three classes for the Jarlskog phase, α, β , or γ . It is pointed out that if δCKM = ±δPMNS
is empirically proved then the idea of spontaneous CP violation à la Froggatt and Nielsen with a UGUTF makes sense [35]. In this case, 
the value δPMNS will choose one class of the CKM parametrizations.

3. Yukawa couplings and masses

3.1. U(1) charges in anti-SU(7)

To check the Yukawa couplings, it is useful to have U(1) charges in the anti-SU(7) model. For completeness, therefore, we list them. For 
the fundamental representation 7, the U(1) charges belonging to SU(5) and SU(7) are defined as
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(
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The extra U(1) charge beyond SU(7) is

Z =
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. (4)

For the matter 7, therefore, we represent it as 7−5/7. The electroweak hypercharge Y of the SM and the U(1) charge X of the flipped-SU(5) 
are defined as

1 String calculation of all non-renormalizable couplings are not available at present. See, for an attempt, Ref. [32].
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Fig. 1. The wave function in the fundamental domain (in the bulk). With Z4 symmetry, there are two fixed points in the two-dimensional torus. The yellow region is the 
fundamental domain and red bullets are two fixed points. The bulk wave function must be symmetric on the line connecting the fixed points, for which two examples of 
green lines are shown.
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When 21 branches to SU(5) representations 10, 2 · 5, and 1, the SM U(1) charges are required to be the familiar ones, determining 
subscripts a, b, c in the following,

(10a; 5b, 5b; 1c) =
(

1

3
(dc),

1

6
(q), 0(N); 5a, 5a, 1b

)
→ a = 1

5
(∼ 6

5
), b = 3

5
, c = 0, (6)

where we used Eqs. (3) and (5) and used quantum numbers of 21 = �[AB] . When 35 branches to SU(5) representations as 10, 2 · 10, 
and 5, similarly subscripts d, e, f in the following are determined as

(
10d; 10e, 10e; 5 f

) =
(−1

3
,

−1

6
, 0(N) ; 2

[
1

3
(dc),

1

6
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; 5g

)
→ d = −1

5
(∼ 9

5
), e = 1

5
(∼ 6

5
), f = 3

5
, (7)

where we used Eqs. (3) and (5) and used quantum numbers of 35 = �[ABC] . Because of the compact group nature, the naive U(1) charge 
calculation given in the bracket just by the tensor representation components is not exact. We use the |X | ≤ 1 for the fundamental 
representation Eq. (5). With two SU(5) indices, the |X | charge are redundantly added, and we subtract ±1. With one more indices in 
addition to the two indices, again we subtract ±1 once more. The rule to use in Eqs. (6) and (7) is to subtract (N − 1) from X for N SU(5) 
indices. Because d = − 1

5 and e = 1
5 , one vectorlike pair of 10 and 10 are removed at the GUT scale and we obtain two 101/5’s from two

21 of Eq. (6) and one 101/5 from 35 of Eq. (7). In particular, note that 10−1/5 of Eq. (7) contains N which can develop a VEV. Thus, there 
result three SM families. Therefore, for the chiral representations we treat the anti-SU(5) representations as usual. For the BEH scalars, we 
need U(1) charges of the anti-SU(5) as 5−2/5 which houses Hd and 5+2/5 which houses Hu .

Now we can calculate the Yukawa coupling matrices for the quark sector. Here, we attempt to calculate V CKM, and comment on UPMNS
in the end. For charged leptons including e+, μ+, τ+ , which appear as SU(7) singlets, we must obtain all SU(7) singlet spectra. These 
singlets are not available at present. Thus, we try to calculate V CKM and UPMNS without the knowledge on the singlets. The CKM matrix is 
obtained if we know the Q em = 2

3 and −1
3 quark mass matrices,

uL M(2/3)uR = 101/5 5−3/5 〈BEH,2/5 · (· · · )〉
dL M(−1/3)dR = 101/5 101/5 〈BEH,−2/5 · (· · · )〉 (8)

where we used the anti-SU(5) notation. For the PMNS matrix [36], we need information on the flipped-SU(5) singlets, in particular those 
corresponding to e+ . Since the anti-SU(7) singlets are not available now, we cannot discuss the PMNS matrix.

As commented in Ref. [1], the b-quark mass is expected to be much smaller than the t-quark mass, O (〈T 21
3,BEH〉〈T 7

3,BEH〉/Ms〈T 7
6,BEH〉), 

where 〈T 21
3,BEH〉 is the SU(5) splitting VEV 〈[67]〉. Thus, we expect mb/mt ∼ 〈[67]〉

Ms tan β
. Even if tan β = O (1), we can fit mb/mt to the observed 

value by appropriately tuning 〈[67]〉. A similar suppression occurs for the second family members.

3.2. A democratic submatrix of Mweak

The multiplicity 2 [1] of the fields from T3 leads to a democratic form for the submatrix of the mass matrix. We interpret this in the 
field theory language. In the two-dimensional torus, we depict the situation for Z4 in Fig. 1. Let us simplify the fundamental region to 
the one-dimensional line shown as red line in Fig. 1, whose coordinate is y. The massless fields sitting at the fixed points have the wave 
function ∝ δ(y − F1) and ∝ δ(y − F2). The Yukawa couplings of fermions 

∫
dy1dy2dy3�a(y1)�b(y2)Hc(y3) must be of the democratic form 
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due to the symmetric wave function of Hc(y3), i.e. those of the green lines of Fig. 1. In the string computation this feature is summarized 
as allowed Yukawa couplings of the twisted sector fields sitting at y1, y2, and y3 [31,37]. In our case, the second and third family (quark 
and antiquark) fields are at T3, and the Higgs fields are at T6 for Hu and at T3 for Hd . The Higgs field at T6 has multiplicity 1 [1]. Also, the 
Higgs field at T3 has multiplicity 1 due to the anomaly cancellation condition, and the singlet is a symmetric combination 1√

2
(F1 + F2). 

Thus, the area of the triangle between the quark, antiquark, and Higgs fields is zero because they sit at the same point or at the ends of 
the red line. The area rule of the coupling between three fixed point fields e−Area is 1. This statement is the case after integrating out over 
the 1st and 3rd tori internal coordinates, and Fig. 1 is the 2nd torus. Thus, the multiplicity 2 of the T3 fields must have the democratic 
form for mass matrix if all the other (in particular the gauge) quantum numbers are the same. Thus, we consider(

1
2

1
2

1
2

1
2

)
→

(
0 0
0 1

)
(9)

which can be diagonalized to give the eigenvalues 0 and 1. The democratic form can be extended to have a permutation symmetric form 
S2 which has only singlet representations. Introducing two small numbers x and y (for the two independent singlets) for breaking the S2
symmetry, it can be diagonalized to

M =
(

1
2 + y

2 , 1
2 + x

2
1
2 + x

2 , 1
2 + y

2

)
→

( −x+y
2 , 0

0, 1 + x+y
2

)
→

(−ε + ε′, 0

0, 1 + ε

)
, with ε = x + y

2
, ε′ = y (10)

by

U †
2×2MU2×2, with U2×2 =

(
1√
2
, 1√

2
− 1√

2
, 1√

2

)
. (11)

A 3 × 3 mass matrix is changed, using a U3×3 matrix,

U †
3×3

⎛
⎜⎝

u1, u2, u2

u∗
3,

1
2 + y

2 , 1
2 + x

2

u∗
3,

1
2 + x

2 , 1
2 + y

2

⎞
⎟⎠ U3×3 →

⎛
⎜⎝

u1, 0, ε2

0, − x
2 , 0

ε∗
3 , 0, 1 + x

2

⎞
⎟⎠ (12)

where U3×3 contains the U2×2 submatrix. Here, u’s denote small parameters, breaking S2 spontaneously by the GUT scale VEVs of some 
SM singlet fields: u = O (〈〉/Ms). In view of the worry on the gravity spoil of discrete symmetries [26–29], two singlet fields are better 
to be two components of a doublet representation  of a hypothetical gauge group SU(2) in the bottom-up scenario.2 The VEV 〈〉 breaks 
the S2 symmetry spontaneously [29]. Then, the trace of  quantum number is zero. Thus, trace of Eq. (10) is 1, leading to ε′ = 0. Thus, 
for the gravity-safe correction, which is our case arising from string compactification, let us diagonalize the democratic form to(− x

2 , 0
0, 1 + x

2

)
. (13)

Therefore, from the information on the origin of families in the untwisted and twisted sectors (U1, T3, T +
5 ) [1], we can write the up-

and down-type mass matrices as

M(u)

mt
≈

⎛
⎜⎜⎜⎜⎜⎝

| �[A](T +
5 ) �[A](T3) �[A](T3)

− − − − − | − − − − −− − − − − −− − − − − −−
�[ABC](U1) | εu 0 ε2

�[AB](T3) | 0 xc 0

�[AB](T3) | ε∗
3 0 1

⎞
⎟⎟⎟⎟⎟⎠ (14)

M(d)

mb
≈

⎛
⎜⎜⎜⎜⎜⎝

| �[ABC](U1) �[AB](T3) �[AB](T3)

− − − − − | − − − − −− − − − − −− − − − − −−
�[ABC](U1) | εd 0 ε1

�[AB](T3) | 0 xs 0

�[AB](T3) | ε1 0 1

⎞
⎟⎟⎟⎟⎟⎠ (15)

where the parameters in Eqs. (14), (15) can be complex in general. The zero entries in (23) and (32) elements in Eqs. (14), (15) are 
approximate, as commented above, since S2 is broken by the GUT scale VEVs of some SM singlet fields: u = O (〈〉/Ms). However, its 
effect is small xc,s · O (〈〉/Ms), not significantly changing the subsequent numerical study. Note that M(u) is not a Hermitian matrix and 
M(d) is a symmetric matrix. In the bases where Eqs. (14), (15) are written, we proceed to calculate the CKM and PMNS matrices. Parameter 
ε1 is given in the democratic form of the 2 × 2 matrix. But Eq. (15) is written in the bases where the democratic form is broken. Thus, we 
expect two parameters ε1(1 ± O (xs)). Since xs is small, we neglect this S2 breaking correction as commented above. Similar comments 
apply to ε2 and ε3.

2 In the top-down scenario, there will be no gravity spoil problem, presumably satisfying the above condition automatically.
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3.3. The CKM matrix

Since M(d) is symmetric, let us absorb two phases ε1 and εd in �[AB](T3) and �[ABC](T3). So, the d-quark Yukawa couplings can be 
considered real. And we allow a real VEV for H0

d . If it were complex, its phase can be absorbed to right-handed d quarks. Then the real 
symmetric matrix M(d) is diagonalized by an orthogonal matrix O  = O L = O R ,

M(d)

weak = O

⎛
⎝md 0 0

0 ms 0
0 0 mb

⎞
⎠ O T (16)

where

M(d)

weak =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mdc2
1 + msc2

2s2
1+mbs2

1s2
2

mdc1c3s1
−msc2s1[c1c2c3 + s2s3]
−mbs1s2[−c2s3 + c1c3s2]

mdc1s1s3
−msc2s1[c1c2s3 − s2c3]
−mbs1s2[c2c3 + c1s2s3]

mdc1c3s1
−msc2s1[c1c2c3 + s2s3]
−mbs1s2[−c2s3 + c1s2c3]

mdc2
3s2

1+ms[c1c2c3 + s2s3]2

+mb[−c2s3 + c1s2c3]2

mdc3s2
1s3

+ms[c1c2c3 + s2s3]
·[c1c2s3 − s2c3]

+mb[−c2s3 + c1s2c3]
·[c2c3 + c1s2s3]

mdc1s1s3
−msc2s1[c1c2s3 − s2c3]
−mbs1s2[c2c3 + c1s2s3]

mdc3s2
1s3

+ms[c1c2s3 − s2c3]
·[c1c2c3 + s2s3]

+mb[c2c3 + c1s2s3]
·[−c2s3 + c1s2c3]

mds2
1s2

3+ms[c1c2s3 − s2c3]2

+mb[c2c3 + c1s2s3]2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

where θi represent the orthogonal matrix angles θO,i . Here, O is taken as a real KS parametrization,

V KS
real =

⎛
⎝ cO,1 sO,1cO,3 sO,1sO,3

−cO,2sO,1 sO,2sO,3 + cO,1cO,2cO,3 −sO,2cO,3 + cO,1cO,2sO,3
−sO,1sO,2 −cO,2sO,3 + cO,1sO,2cO,3 cO,2cO,3 + cO,1sO,2sO,3

⎞
⎠ . (18)

We consider md = O (λ4) × mb . In Eq. (17), the (23) and (32) elements are vanishing up to O(λ9) for

sO,1 = 0, tO,2 = tO,3, (19)

where the angles are in the 1st quadrant. Angles given in (19) matches to Eq. (15). Thus, there is one angle parameter in V KS
real, which is 

taken as θO = θO,2 = θO,2. So, the orthogonal matrix diagonalizing M(d) is

V (d)
L = V (d)

R =
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ . (20)

However, because of the S2 breaking effect as commented above, V (d)
L,R contains small parameters of O (ε1xs). For simplicity, we neglect 

the O (ε1xs) correction. In the model of Ref. [1], ε1 = O (V GUT/Ms). This is because one may consider the following for ε1

1

M2
s
εABC D E F G�

[ABC]
U1

�
[D E]
T3

F
T3,BEH〈G

T3,BEH〉〈1T11,BEH〉,

and mb = O (V GUT/Ms). Thus, ε1xs is estimated to be O (λ4). Then, the determination of the CKM matrix depends approximately on the 
diagonalization of M(u) .

3.4. The CKM and PMNS matrices from anti-SU(7) UGUTF

Now the CKM matrix is determined from the diagonalization of M(u) by bi-unitary matrices: V (u)
L and V (u)

R with V (u)
L �= V (u)

R ,

V CKM = V (u)
L O (d) T

L 	 V (u)
L

(21)

which does not depend on V (u)
R . The matrix elements and Q em = 2

3 quark masses have the following relations

u(mass i)
L = V ia

L ua
L, u(mass i)

R = V ia
R ua

R ,

ūb
R Mba

weak,uua
L = ū(mass j)

R (V R) jb Mba
weak,u(V †

L)
aiu(mass i)

L .
(22)

Thus, the mass matrix elements in the weak basis are
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Mba
weak,u = (V †

R)bj M ji
diag,u(V L)

ia = mu(V †
R)b1(V L)

1a + mc(V †
R)b2(V L)

2a + mt(V †
R)b3(V L)

3a, (23)

or ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

muc′
1c1

+mcc′
2s′

1c2s1

+mt s′
1s′

2s1s2eiδCKM−iδ′
CKM

muc′
1s1c3

−mcc′
2s′

1[c1c2c3 + s2s3e−iδCKM ]
−mt s′

1s′
2e−iδ′

CKM

·[−c2s3 + c1s2c3eiδCKM ]

muc′
1s1s3

−mcc′
2s′

1[c1c2s3 − s2c3e−iδCKM ]
−mt s′

1s′
2e−iδ′

CKM

·[c2c3 + c1s2s3eiδCKM ]

muc′
3s′

1c1

−mc[c′
1c′

2c′
3 + s′

2s′
3eiδ′

CKM ]c2s1

−mt[−c′
2s′

3 + c′
1s′

2c′
3e−iδ′

CKM ]
·s1s2eiδCKM

muc′
3s′

1s1c3

+mc[c′
1c′

2c′
3 + s′

2s′
3eiδ′

CKM ]
·[c1c2c3 + s2s3e−iδCKM ]

+mt[−c′
2s′

3 + c′
1s′

2c′
3e−iδ′

CKM ]
·[−c2s3 + c1s2c3eiδCKM ]

muc′
3s′

1s1s3

+mc[c′
1c′

2c′
3 + s′

2s′
3eiδ′

CKM ]
·[c1c2s3 − s2c3e−iδCKM ]

+mt[−c′
2s′

3 + c′
1s′

2c′
3e−iδ′

CKM ]
·[c2c3 + c1s2s3eiδCKM ]

mu s′
1s′

3c1

−mc[c′
1c′

2s′
3 − s′

2c′
3eiδCKM ]c2s1

−mt[c′
2c′

3 + c′
1s′

2s′
3e−iδ′

CKM ]
·s1s2eiδCKM

mu s′
1s′

3s1c3

+mc[c′
1c′

2s′
3 − s′

2c′
3eiδ′

CKM ]
·[c1c2c3 + s2s3e−iδCKM ]

+mt[c′
2c′

3 + c′
1s′

2s′
3e−iδ′

CKM ]
·[−c2s3 + c1s2c3eiδCKM ]

mus′
1s′

3s1s3

+mc[c′
1c′

2s′
3 − s′

2c′
3eiδCKM ]

·[c1c2s3 − s2c3e−iδCKM ]
+mt[c′

2c′
3 + c′

1s′
2s′

3e−iδ′
CKM ]

·[c2c3 + c1s2s3eiδCKM ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

where angles in V (u)
L are θi , δ and angles in V (u)

R are θ ′
i , δ′ .

Comparing Eqs. (14) and (24), we have 9 constraints. The order of magnitudes of the elements are such that the determinant of 
mass matrix is O (λ8m3

t ) with mc = O (λ2)mt and mu = O (λ6)mt . Thus, the product of (11), (23), and (32) elements is O (λ8m3
t ), and the 

product of (11), (22), and (33) elements is also O (λ8m3
t ). So, let the (22) element is O (λmt) or O (λ2mt). For M(u)

(11) = O (λ5mt), we require 
M(u)

(23) = O (λ3/2mt) and M(u)
(32) = O (λ3/2mt). For M(u)

(11) = O (λ4mt), we require M(u)
(23) = O (λ2mt) and M(u)

(32) = O (λ2mt). So, whether the (22) 
element is O (λmt) or O (λ2mt), we consider M(u)

(23) = O (λ2mt) and M(u)
(32) = O (λ2mt). Because the (33) element is O (1), we require both 

(12) and (21) elements to be O (λ4). By the same argument, we require both (13) and (31) elements to be O (λ3). Thus, we require

(11)� O (λ4)mt, (25)

(12)� O (λ4)mt, (26)

(13) = O (λ3)mt, (27)

(21)� O (λ4)mt, (28)

(31) = O (λ3)mt, (29)

(22)� O (λ2 or λ)mt , (30)

(23) = O (λ2)mt, (31)

(32) = O (λ2)mt, (32)

(33) = O (1)mt, (33)

where we used mt = 173.21 GeV, mc = 1.275 GeV, and λ = sin θ1 cos θ3 = 0.2253. The determinant can be mumcmt with (31), (22), and 
(13) elements for the orders given above. So, we take (11), (12), and (21) elements with inequality signs.

Before presenting a numerical study, let us check that solutions suggested in Eqs. (25)–(33) are possible. From the (23) element, we 
restrict s′

2 and s′
3 at order λ2,

(23): muc′
3s′

1s1s3 + mc[c′
1c′

2c′
3 + s′

2s′
3eiδ′

CKM ] · [c1c2s3 − s2c3e−iδCKM ]
+ mt[−c′

2s′
3 + c′

1s′
2c′

3e−iδ′
CKM ] · [c2c3 + c1s2s3eiδCKM ] 	 0

→ s′
2 = O (λ2), s′

3 = O (λ2).

(34)

Then, we satisfy (32) and (22) elements,

(32): mus′
1s′

3s1c3 + mc[c′
1c′

2s′
3 − s′

2c′
3eiδ′

CKM ] · [c1c2c3 + s2s3e−iδCKM ]
+ mt[c′

2c′
3 + c′

1s′
2s′

3e−iδ′
CKM ] · [−c2s3 + c1s2c3eiδCKM ] = O (λ2),

(35)

(22): muc′
3s′

1s1c3 + mc[c′
1c′

2c′
3 + s′

2s′
3eiδ′

CKM ] · [c1c2c3 + s2s3e−iδCKM ]
+ mt[−c′

2s′
3 + c′

1s′
2c′

3e−iδ′
CKM ] · [−c2s3 + c1s2c3eiδCKM ] = O (λ2).

(36)

Now, the (12) element restricts s′ at order λ2,
1
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Fig. 2. The bounds on the angles of the right-handed unitary matrix V (u)
R diagonalizing M(u) , (a) a = 1

1.5 sin θc , b = 1.5 sin θc , and (b) a = 1
1.2 sin θC , b = 1.2 sin θc . The white 

regions are not allowed.

(12): muc′
1s1c3 − mcc′

2s′
1[c1c2c3 + s2s3e−iδCKM ] − mt s′

1s′
2e−iδ′

CKM · [−c2s3 + c1s2c3eiδCKM ] = O (λ4)

→ s′
1 = O (λ2)

(37)

Then, the (11) element is very small, O (λ5). The remaining (21), (13), and (31) elements are

(21): muc′
3s′

1c1 − mc[c′
1c′

2c′
3 + s′

2s′
3eiδ′

CKM ]c2s1 − mt[−c′
2s′

3 + c′
1s′

2c′
3e−iδ′

CKM ] · s1s2eiδCKM = O (λ3), (38)

(13): muc′
1s1s3 − mcc′

2s′
1[c1c2s3 − s2c3e−iδCKM ] − mt s′

1s′
2e−iδ′

CKM · [c2c3 + c1s2s3eiδCKM ] = O (λ4), (39)

(31): mu s′
1s′

3c1 − mc[c′
1c′

2s′
3 − s′

2c′
3eiδCKM ]c2s1 − mt[c′

2c′
3 + c′

1s′
2s′

3e−iδ′
CKM ] · s1s2eiδCKM = O (λ3) (40)

where we considered mc = O (λ2)mt . Here the rough bound of Eqs. (25)–(33) are satisfied except in Eq. (38). But, mc is between O (λ2)mt

and O (λ3)mt and Eqs. (38) is acceptable in our rough estimation. In our order of estimation, δ′
CKM is not restricted.3

Therefore, the mass matrices Eqs. (14) and (15) obtained from anti-SU(7) UGUTF leads to a reasonable CKM matrix. Similarly, one 
can consider the lepton mixing angles which however need singlet contributions. Since there will appear additional parameters for the 
unknown heavy neutral lepton masses, there will be more freedom fitting for a reasonable PMNS matrix [36].

4. Bounds on the parameters of right-handed unitary matrix V (u)
R

In Fig. 2, we present the allowed angles of V (u)
R . The color code is: the projection on θ ′

2 versus θ ′
1 for all allowed θ ′

3 and δ′
CKM

as blue, and δ′
CKM versus θ ′

3 for all allowed θ ′
1 and θ ′

2 as red. We allowed the 1 σ for θ1, θ2, θ3 and δCKM in V (u)
L . We choose the V L

angles as θ1 = 13.025◦+0.039◦
−0.038◦ , θ2 = 2.292◦+2.625◦

−2.217◦ ,4 θ3 = 0.8923◦+0.0382◦
−0.0357◦ , and δCKM = 85.4◦+3.9◦

−3.8◦ [2]. For the right-hand sides (of equality or 
inequalities) in Eqs. (25)–(33) the expansion parameter λn is varied in the region an ≤ λn ≤ bn . In Fig. 2(a), we choose a = 2

3 sin θC and 
b = 3

2 sin θC . In Fig. 2(b), we choose a = 1
1.2 sin θC and b = 1.2 sin θC . From Fig. 2, we conclude that the mass matrices Eqs. (14) and (15), 

suggested from the UGUTF anti-SU(7), are phenomenologically allowed.

5. Conclusion

We presented bounds on the mixing angles of the right-handed currents, diagonalizing the quark mass matrices, suggested from a 
recently proposed families unified GUT model based on anti-SU(7) [1]. The investigation suggests that quark mass matrices suggested in 
[1] are phenomenologically allowable, and a numerical search is presented in figures on four mixing angles of V (u)

R within the 1σ bounds 
of the CKM parameters, θ1, θ2, θ3, and δCKM. The currently allowed CKM parametrization falls into three classes by choosing δCKM = α, β , 
or γ of the PDG book. The Kobayashi–Maskawa and Kim–Seo parametrization choose δCKM = α and Chau–Keung–Maiani parametrization 
chooses δCKM = γ . It suggests that with three real CKM angles fixed, the area of the Jarlskog triangle is close to the maximum.
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