41 research outputs found

    Low Intensity Resistance Exercise Training with Blood Flow Restriction: Insight into Cardiovascular Function, and Skeletal Muscle Hypertrophy in Humans

    Get PDF
    Attenuated functional exercise capacity in elderly and diseased populations is a common problem, and stems primarily from physical inactivity. Decreased function and exercise capacity can be restored by maintaining muscular strength and mass, which are key factors in an independent and healthy life. Resistance exercise has been used to prevent muscle loss and improve muscular strength and mass. However, the intensities necessary for traditional resistance training to increase muscular strength and mass may be contraindicated for some at risk populations, such as diseased populations and the elderly. Therefore, an alternative exercise modality is required. Recently, blood flow restriction (BFR) with low intensity resistance exercise (LIRE) has been used for such special populations to improve their function and exercise capacity. Although BFR+LIRE has been intensively studied for a decade, a comprehensive review detailing the effects of BFR+LIRE on both skeletal muscle and vascular function is not available. Therefore, the purpose of this review is to discuss previous studies documenting the effects of BFR+LIRE on hormonal and transcriptional factors in muscle hypertrophy and vascular function, including changes in hemodynamics, and endothelial function

    Two Years after the <i>Hebei Spirit</i> Oil Spill: Residual Crude-Derived Hydrocarbons and Potential AhR-Mediated Activities in Coastal Sediments

    No full text
    The <i>Hebei Spirit</i> oil spill occurred in December 2007 approximately 10 km off the coast of Taean, South Korea, on the Yellow Sea. However, the exposure and potential effects remain largely unknown. A total of 50 surface and subsurface sediment samples were collected from 22 sampling locations at the spill site in order to determine the concentration, distribution, composition of residual crudes, and to evaluate the potential ecological risk after two years of oil exposure. Samples were extracted and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), 20 alkyl-PAHs, 15 aliphatic hydrocarbons, and total petroleum hydrocarbons using GC-MSD. AhR-mediated activity associated with organic sediment extracts was screened using the H4IIE-<i>luc</i> cell bioassay. The response of the benthic invertebrate community was assessed by mapping the macrobenthic fauna. Elevated concentrations of residual crudes from the oil spill were primarily found in muddy bottoms, particularly in subsurface layers. In general, the bioassay results were consistent with the chemistry data in a dose-dependent manner, although the mass-balance was incomplete. More weathered samples containing greater fractions of alkylated PAHs exhibited greater AhR activity, due to the occurrence of recalcitrant AhR agonists present in residual oils. The macrobenthic population distribution exhibits signs of species-specific tolerances and/or recolonization of certain species such as <i>Batillaria</i> during weathering periods. Although the <i>Hebei Spirit</i> oil spill was a severe oil exposure, it appears the site is recovering two years later

    Intestinal Flukes

    No full text
    corecore