240 research outputs found

    Physical properties and lattice dynamics of bixbyite-type V2O3

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Some time ago, we reported the synthesis of bixbyite-type V2O3, a new metastable polymorph of vanadium sesquioxide. Since, a number of investigations followed, dealing with different aspects like electronic and magnetic properties of the material, the deviation from ideal stoichiometry or the preparation of nanocrystals as oxygen storage material. However, most of the physical properties were only evaluated on a theoretical basis. Here, we report the lattice dynamics and physical properties of bixbyite-type V2O3 bulk material, which we acquired from physical property measurements and neutron diffraction experiments over a wide temperature range. Besides attributing different possible orientations of the magnetic moments for V1 and V2 to the identified antiferromagnetic (AFM) ground state with a Néel temperature of 38.1(5) K, we use a first order Grüneisen approximation to determine lattice-dependent parameters for the relatively stiff cubic lattice, and, amongst others identify the Debye temperature to be as low as 350 ± 65 K.DFG, 73789094, SPP 1415: Kristalline Nichtgleichgewichtsphasen - Präparation, Charakterisierung und in situ-Untersuchung der Bildungsmechanisme

    Magnetostrictive Neel ordering of the spin-5/2 ladder compound BaMn2O3: distortion-induced lifting of geometrical frustration

    Full text link
    The crystal structure and the magnetism of BaMn2_2O3_3 have been studied by thermodynamic and by diffraction techniques using large single crystals and powders. BaMn2_2O3_3 is a realization of a S=5/2S = 5/2 spin ladder as the magnetic interaction is dominant along 180∘^\circ Mn-O-Mn bonds forming the legs and the rungs of a ladder. The temperature dependence of the magnetic susceptibility exhibits well-defined maxima for all directions proving the low-dimensional magnetic character in BaMn2_2O3_3. The susceptibility and powder neutron diffraction data, however, show that BaMn2_2O3_3 exhibits a transition to antiferromagnetic order at 184 K, in spite of a full frustration of the nearest-neighbor inter-ladder coupling in the orthorhombic high-temperature phase. This frustration is lifted by a remarkably strong monoclinic distortion which accompanies the magnetic transition.Comment: 9 pages, 8 figures, 2 tables; in V1 fig. 2 was included twice and fig. 4 was missing; this has been corrected in V

    Mechanisms Involved in Calcium-Dependent Exocytosis a

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74760/1/j.1749-6632.1991.tb36506.x.pd

    Canted antiferromagnetism in phase-pure CuMnSb

    Full text link
    We report the low-temperature properties of phase-pure single crystals of the half-Heusler compound CuMnSb grown by means of optical float-zoning. The magnetization, specific heat, electrical resistivity, and Hall effect of our single crystals exhibit an antiferromagnetic transition at TN=55 KT_{\mathrm{N}} = 55~\mathrm{K} and a second anomaly at a temperature T∗≈34 KT^{*} \approx 34~\mathrm{K}. Powder and single-crystal neutron diffraction establish an ordered magnetic moment of (3.9±0.1) μB/f.u.(3.9\pm0.1)~\mu_{\mathrm{B}}/\mathrm{f.u.}, consistent with the effective moment inferred from the Curie-Weiss dependence of the susceptibility. Below TNT_{\mathrm{N}}, the Mn sublattice displays commensurate type-II antiferromagnetic order with propagation vectors and magnetic moments along ⟨111⟩\langle111\rangle (magnetic space group R[I]3cR[I]3c). Surprisingly, below T∗T^{*}, the moments tilt away from ⟨111⟩\langle111\rangle by a finite angle δ≈11∘\delta \approx 11^{\circ}, forming a canted antiferromagnetic structure without uniform magnetization consistent with magnetic space group C[B]cC[B]c. Our results establish that type-II antiferromagnetism is not the zero-temperature magnetic ground state of CuMnSb as may be expected of the face-centered cubic Mn sublattice.Comment: 14 pages, 15 figure

    Computational study of LnGaO3 (Ln=La+Gd) perovskites

    Get PDF
    Atomistic simulation techniques have been used to study the thermal properties of perovskite-type LnGaO3 (Ln = La-Gd). A set of interatomic potentials describing interatomic interactions in these compounds was developed and tested over a wide temperature range through utilizing free energyminimization.The predicted dielectric constants, thermal expansion coefficients, phonon density of states and its projections, heat capacity and entropy, elastic moduli, Gruneisen parameters, surface energies for main crystallographic directionsand Debye temperatures are in good agreement with the limited available experimental data. Perovskite-type LnGaO3 (Ln = La-Gd) compounds have been examined under conditions to which substrate materials are typically subjected. Only a narrow region in the phase diagram of LnGaO3 (Ln = La-Gd) and their solid solutions is recommended for use in substrate applications

    Origin of Ferroelectricity in Orthorhombic LuFeO3_3

    Full text link
    We demonstrate that small but finite ferroelectric polarization (∼\sim0.01 μ\muC/cm2^2) emerges in orthorhombic LuFeO3_3 (PnmaPnma) at TNT_N (∼\sim600 K) because of commensurate (k = 0) and collinear magnetic structure. The synchrotron x-ray and neutron diffraction data suggest that the polarization could originate from enhanced bond covalency together with subtle contribution from lattice. The theoretical calculations indicate enhancement of bond covalency as well as the possibility of structural transition to the polar Pna21Pna2_1 phase below TNT_N. The Pna21Pna2_1 phase, in fact, is found to be energetically favorable below TNT_N in orthorhombic LuFeO3_3 (albeitalbeit with very small energy difference) than in isostructural and nonferroelectric LaFeO3_3 or NdFeO3_3. Application of electric field induces finite piezostriction in LuFeO3_3 via electrostriction resulting in clear domain contrast images in piezoresponse force microscopy.Comment: 12 pages, 8 figure

    Lithium Diffusion and Diffraction

    Get PDF
    In the current contribution the application of bond valence method for the prediction (and diffraction-based techniques for the evalution) of ion diffusion pathways in different materials for electrochemical energy conversion and storage will be presented and discussed
    • …
    corecore