

Karlsruhe Institute of Technology

In opernando neutron diffraction and tomography on Li-ion cells

H.Ehrenberg^{1,2}, O. Dolotko³, M.J. Mühlbauer^{1,3}, A. Senyshyn³, M. Knapp¹

¹Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany ²Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), P.O. Box 3640, D-76021 Karlsruhe, Germany ³Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany

Effect of fatigue on crystal structure of electrode materials

O. Dolotko, A. Senyshyn, M. J. Mühlbauer, K. Nikolowski, F. Scheiba, H. Ehrenberg, J. Electrochem. Soc. 159(12) (2012) A2082-A2088

Two batches of Li-ion cells were cycled (CCCV, 1C) 200, 400, 600, 800 and 1000 times at 25 °C and 50 °C

Typical NPD dataset and Rietveld refinement Discharge capacity vs. cycling

Li occupation in Li_xCoO₂ vs. cycling at 25°C

LiC₆/LiC₁₂ phase fraction Li concentration inside vs. cycling the anode vs. cycling

High-resolution monochromatic neutron powder diffraction

A. Senyshyn, O. Dolotko, M. J. Mühlbauer, K. Nikolowski, H. Fuess, H. Ehrenberg, J. Electrochem. Soc. 160(5) (2013) A3198-A3205

In operando experiment carried out at the instrument SPODI (FRM-II) at λ =1.5482 Å in Debye-Scherrer geometry using a multidetector array. Neutron powder diffraction patterns from Li-ion cell of 18650-type vs. state-of-charge

Spatially-resolved neutron powder diffraction on 18650-type cell

A. Senyshyn, M.J. Mühlbauer, O. Dolotko, M. Hofmann, T. Pirling, H. Ehrenberg, J. Power Sources 245 (2014) 678-683

Experimental parameters for the in-situ measurements at STRESS-SPEC (FRM-II): λ =1.64 Å, gauge volume: 2x2x20 mm³

This work was supported by Deutsche Forschungsgemeinschaft, Research Collaborative Center 595 "Electrical Fatigue in Functional Materials".

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Contact: Prof. Dr. Helmut Ehrenberg e-mail: helmut.ehrenberg@kit.edu

www.kit.edu