194 research outputs found

    Charge-flow structures as polymeric early-warning fire alarm devices

    Get PDF
    The charge-flow transistor (CFT) and its applications for fire detection and gas sensing were investigated. The utility of various thin film polymers as possible sensing materials was determined. One polymer, PAPA, showed promise as a relative humidity sensor; two others, PFI and PSB, were found to be particularly suitable for fire detection. The behavior of the charge-flow capacitor, which is basically a parallel-plate capacitor with a polymer-filled gap in the metallic tip electrode, was successfully modeled as an RC transmission line. Prototype charge-flow transistors were fabricated and tested. The effective threshold voltage of this metal oxide semiconductor was found to be dependent on whether surface or bulk conduction in the thin film was dominant. Fire tests with a PFI-coated CFT indicate good sensitivity to smouldering fires

    A chromatographic analysis of the response of polymeric fire-detection devices to combustion products

    Get PDF
    Polymer responses to a variety of smouldering sources, including cellulose, acrylic, urethane, polyvinyl chloride, and wool were investigated. A suitable trapping system for combustion products was developed and a charge flow transistor was fabricated to monitor the transverse or sheet resistance of a thin film

    High intermodulation gain in a micromechanical Duffing resonator

    Full text link
    In this work we use a micromechanical resonator to experimentally study small signal amplification near the onset of Duffing bistability. The device consists of a PdAu beam serving as a micromechanical resonator excited by an adjacent gate electrode. A large pump signal drives the resonator near the onset of bistability, enabling amplification of small signals in a narrow bandwidth. To first order, the amplification is inversely proportional to the frequency difference between the pump and signal. We estimate the gain to be about 15dB for our device

    Measuring Charge Transport in an Amorphous Semiconductor Using Charge Sensing

    Full text link
    We measure charge transport in hydrogenated amorphous silicon (a-Si:H) using a nanometer scale silicon MOSFET as a charge sensor. This charge detection technique makes possible the measurement of extremely large resistances. At high temperatures, where the a-Si:H resistance is not too large, the charge detection measurement agrees with a direct measurement of current. The device geometry allows us to probe both the field effect and dispersive transport in the a-Si:H using charge sensing and to extract the density of states near the Fermi energy.Comment: 4 pages, 4 figure

    Measurement of the Casimir force between dissimilar metals

    Get PDF
    The first precise measurement of the Casimir force between dissimilar metals is reported. The attractive force, between a Cu layer evaporated on a microelectromechanical torsional oscillator, and an Au layer deposited on an Al2_2O3_3 sphere, was measured dynamically with a noise level of 6 fN/Hz\sqrt{\rm{Hz}}. Measurements were performed for separations in the 0.2-2 ÎĽ\mum range. The results agree to better than 1% in the 0.2-0.5 ÎĽ\mum range with a theoretical model that takes into account the finite conductivity and roughness of the two metals. The observed discrepancies, which are much larger than the experimental precision, can be attributed to a lack of a complete characterization of the optical properties of the specific samples used in the experiment.Comment: 6 pages, 4 figure

    Modeling Single Electron Transfer in Si:P Double Quantum Dots

    Full text link
    Solid-state systems such as P donors in Si have considerable potential for realization of scalable quantum computation. Recent experimental work in this area has focused on implanted Si:P double quantum dots (DQDs) that represent a preliminary step towards the realization of single donor charge-based qubits. This paper focuses on the techniques involved in analyzing the charge transfer within such DQD devices and understanding the impact of fabrication parameters on this process. We show that misalignment between the buried dots and surface gates affects the charge transfer behavior and identify some of the challenges posed by reducing the size of the metallic dot to the few donor regime.Comment: 11 pages, 7 figures, submitted to Nanotechnolog

    Fabrication and characterisation of nanocrystalline graphite MEMS resonators using a geometric design to control buckling

    Get PDF
    The simulation, fabrication and characterisation of nanographite MEMS resonators is reported in this paper. The deposition of nanographite is achieved using plasma-enhanced chemical vapour deposition directly onto numerous substrates such as commercial silicon wafers. As a result, many of the reliability issues of devices based on transferred graphene are avoided. The fabrication of the resonators is presented along with a simple undercutting method to overcome buckling, by changing the effective stress of the structure from 436 MPa compressive, to 13 MPa tensile. The characterisation of the resonators using electrostatic actuation and laser Doppler vibrometry is reported, demonstrating resonator frequencies from 5–640 kHz and quality factor above 1819 in vacuum obtained

    An excitable electronic circuit as a sensory neuron model

    Get PDF
    An electronic circuit device, inspired on the FitzHugh-Nagumo model of neuronal excitability, was constructed and shown to operate with characteristics compatible with those of biological sensory neurons. The nonlinear dynamical model of the electronics quantitatively reproduces the experimental observations on the circuit, including the Hopf bifurcation at the onset of tonic spiking. Moreover, we have implemented an analog noise generator as a source to study the variability of the spike trains. When the circuit is in the excitable regime, coherence resonance is observed. At sufficiently low noise intensity the spike trains have Poisson statistics, as in many biological neurons. The transfer function of the stochastic spike trains has a dynamic range of 6 dB, close to experimental values for real olfactory receptor neurons.Comment: 10 pages, 6 figure

    Microwave sensor system for continuous monitoring of adhesive curing processes

    Full text link
    A microwave sensor system has been developed for monitoring adhesive curing processes. The system provides continuous, real-time information about the curing progress without interfering with the reaction. An open-coaxial resonator is used as the sensor head, and measurements of its resonance frequency and quality factor are performed during cure to follow the reaction progress. Additionally, the system provides other interesting parameters such as reaction rate or cure time. The adhesive dielectric properties can also be computed off-line, which gives additional information about the process. The results given by the system correlate very well with conventional measurement techniques such as differential scanning calorimetry, combining accuracy and rate with simplicity and an affordable cost. © 2012 IOP Publishing Ltd.The authors thank Rut Benavente Martinez for her assistance in the DSC experiments. The contract of BG-B is financed by the Ministry of Science and Innovation of Spain, through the 'Torres Quevedo' Sub-programme, which is also co-financed by the European Social Fund (ESF). This work has been financed by the Ministry of Science and Innovation of Spain through the project MONIDIEL (TEC2008-04109).García Baños, B.; Catalá Civera, JM.; Penaranda-Foix, FL.; Canós Marín, AJ.; Sahuquillo Navarro, O. (2012). Microwave sensor system for continuous monitoring of adhesive curing processes. Measurement Science and Technology. 23(3). https://doi.org/10.1088/0957-0233/23/3/035101S233Jost, M., & Sernek, M. (2008). Shear strength development of the phenol–formaldehyde adhesive bond during cure. Wood Science and Technology, 43(1-2), 153-166. doi:10.1007/s00226-008-0217-2Costa, M. L., Botelho, E. C., Paiva, J. M. F. de, & Rezende, M. C. (2005). Characterization of cure of carbon/epoxy prepreg used in aerospace field. Materials Research, 8(3), 317-322. doi:10.1590/s1516-14392005000300016Chen, J., & Hojjati, M. (2007). Microdielectric analysis and curing kinetics of an epoxy resin system. Polymer Engineering & Science, 47(2), 150-158. doi:10.1002/pen.20687Sernek, M., & Kamke, F. A. (2007). Application of dielectric analysis for monitoring the cure process of phenol formaldehyde adhesive. International Journal of Adhesion and Adhesives, 27(7), 562-567. doi:10.1016/j.ijadhadh.2006.10.004Núñez, L., Gómez-Barreiro, S., Gracia-Fernández, C. A., & Núñez, M. R. (2004). Use of the dielectric analysis to complement previous thermoanalytical studies on the system diglycidyl ether of bisphenol A/1,2 diamine cyclohexane. Polymer, 45(4), 1167-1175. doi:10.1016/j.polymer.2003.12.024Lefebvre, D. R., Han, J., Lipari, J. M., Long, M. A., McSwain, R. L., & Wells, H. C. (2006). Dielectric analysis for in-situ monitoring of gelatin renaturation and crosslinking. Journal of Applied Polymer Science, 101(5), 2765-2775. doi:10.1002/app.21631Cordovez, M., Li, Y., & Karbhari, V. M. (2004). Assessment of Dielectrometry for Characterization of Processing and Moisture Absorption in FRP Composites. Journal of Reinforced Plastics and Composites, 23(4), 445-456. doi:10.1177/0731684404031980Das, N. K., Voda, S. M., & Pozar, D. M. (1987). Two Methods for the Measurement of Substrate Dielectric Constant. IEEE Transactions on Microwave Theory and Techniques, 35(7), 636-642. doi:10.1109/tmtt.1987.1133722Fioretto, D., Livi, A., Rolla, P. A., Socino, G., & Verdini, L. (1994). The dynamics of poly(n-butyl acrylate) above the glass transition. Journal of Physics: Condensed Matter, 6(28), 5295-5302. doi:10.1088/0953-8984/6/28/007Givot, B. L., Krupka, J., & Belete, D. Y. (s. f.). Split post dielectric resonator technique for dielectric cure monitoring of structural adhesives. 13th International Conference on Microwaves, Radar and Wireless Communications. MIKON - 2000. Conference Proceedings (IEEE Cat. No.00EX428). doi:10.1109/mikon.2000.913931Canos, A. J., Catala-Civera, J. M., Penaranda-Foix, F. L., & Reyes-Davo, E. (2006). A novel technique for deembedding the unloaded resonance frequency from measurements of microwave cavities. IEEE Transactions on Microwave Theory and Techniques, 54(8), 3407-3416. doi:10.1109/tmtt.2006.877833Marks, R. B., & Williams, D. F. (1992). A general waveguide circuit theory. Journal of Research of the National Institute of Standards and Technology, 97(5), 533. doi:10.6028/jres.097.024Harrington, R. F. (1967). Matrix methods for field problems. Proceedings of the IEEE, 55(2), 136-149. doi:10.1109/proc.1967.5433Baker-Jarvis, J., Janezic, M. D., Domich, P. D., & Geyer, R. G. (1994). Analysis of an open-ended coaxial probe with lift-off for nondestructive testing. IEEE Transactions on Instrumentation and Measurement, 43(5), 711-718. doi:10.1109/19.328897Taylor, B. N. (1994). Guidelines for evaluating and expressing the uncertainty of NIST measurement results. doi:10.6028/nist.tn.1297Casalini, R., Corezzi, S., Livi, A., Levita, G., & Rolla, P. A. (1997). Dielectric parameters to monitor the crosslink of epoxy resins. Journal of Applied Polymer Science, 65(1), 17-25. doi:10.1002/(sici)1097-4628(19970705)65:13.0.co;2-tPreu, H., & Mengel, M. (2007). Experimental and theoretical study of a fast curing adhesive. International Journal of Adhesion and Adhesives, 27(4), 330-337. doi:10.1016/j.ijadhadh.2006.06.004Harper, D. P., Wolcott, M. P., & Rials, T. G. (2001). Evaluation of the cure kinetics of the wood/pMDI bondline. International Journal of Adhesion and Adhesives, 21(2), 137-144. doi:10.1016/s0143-7496(00)00045-2Garcia-Banos, B., Canos, A. J., Penaranda-Foix, F. L., & Catala-Civera, J. M. (2011). Noninvasive Monitoring of Polymer Curing Reactions by Dielectrometry. IEEE Sensors Journal, 11(1), 62-70. doi:10.1109/jsen.2010.2050475He, Y. (2001). DSC and DEA studies of underfill curing kinetics. Thermochimica Acta, 367-368, 101-106. doi:10.1016/s0040-6031(00)00654-7Núñez-Regueira, L., Gracia-Fernández, C. A., & Gómez-Barreiro, S. (2005). Use of rheology, dielectric analysis and differential scanning calorimetry for gel time determination of a thermoset. Polymer, 46(16), 5979-5985. doi:10.1016/j.polymer.2005.05.06
    • …
    corecore