15 research outputs found

    Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment

    Get PDF
    The KATRIN experiment aims to determine the effective electron neutrino mass with a sensitivity of 0.2 eV/c2 (%90 CL) by precision measurement of the shape of the tritium β-spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. A common background source in this setup is the decay of short-lived isotopes, such as 219Rn and 220Rn, in the spectrometer volume. Active and passive countermeasures have been implemented and tested at the KATRIN main spectrometer. One of these is the magnetic pulse method, which employs the existing air coil system to reduce the magnetic guiding field in the spectrometer on a short timescale in order to remove low- and high-energy stored electrons. Here we describe the working principle of this method and present results from commissioning measurements at the main spectrometer. Simulations with the particle-tracking software Kassiopeia were carried out to gain a detailed understanding of the electron storage conditions and removal processes

    Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment

    Get PDF
    The KATRIN experiment aims to determine the effective electron neutrino mass with a sensitivity of 0.2 eV/c2 (%90 CL) by precision measurement of the shape of the tritium β-spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. A common background source in this setup is the decay of short-lived isotopes, such as 219Rn and 220Rn, in the spectrometer volume. Active and passive countermeasures have been implemented and tested at the KATRIN main spectrometer. One of these is the magnetic pulse method, which employs the existing air coil system to reduce the magnetic guiding field in the spectrometer on a short timescale in order to remove low- and high-energy stored electrons. Here we describe the working principle of this method and present results from commissioning measurements at the main spectrometer. Simulations with the particle-tracking software Kassiopeia were carried out to gain a detailed understanding of the electron storage conditions and removal processes

    Gamma-induced background in the KATRIN main spectrometer

    Get PDF
    International audienceThe KArlsruhe TRItium Neutrino (KATRIN) experiment aims to make a model-independent determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c 2 . It investigates the kinematics of β -particles from tritium β -decay close to the endpoint of the energy spectrum. Because the KATRIN main spectrometer (MS) is located above ground, muon-induced backgrounds are of particular concern. Coincidence measurements with the MS and a scintillator-based muon detector system confirmed the model of secondary electron production by cosmic-ray muons inside the MS. Correlation measurements with the same setup showed that about 12% of secondary electrons emitted from the inner surface are induced by cosmic-ray muons, with approximately one secondary electron produced for every 17 muon crossings. However, the magnetic and electrostatic shielding of the MS is able to efficiently suppress these electrons, and we find that muons are responsible for less than 17% (90% confidence level) of the overall MS background

    First transmission of electrons and ions through the KATRIN beamline

    Get PDF
    The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium ß-decay. This work documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, gaseous 83mKr was injected into the KATRIN source section, and a condensed 83mKr source was deployed in the transport section. In this paper we describe the technical details of the apparatus and the configuration for each measurement, and give first results on source and system performance. We have successfully achieved transmission from all four sources, established system stability, and characterized many aspects of the apparatus

    First transmission of electrons and ions through the KATRIN beamline

    No full text

    Calibration of high voltages at the ppm level by the difference of 83m^{83m}Kr conversion electron lines at the KATRIN experiment

    Get PDF
    The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at − 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two 83m^{83m} Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN’s commissioning measurements in July 2017. The measured scale factor M=1972.449(10) M=1972.449(10) of the high-voltage divider K35 is in agreement with the last PTB calibration 4 years ago. This result demonstrates the utility of the calibration method, as well as the long-term stability of the voltage divider

    Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment

    Get PDF
    Arenz, M., et al. “Reduction of Stored-Particle Background by a Magnetic Pulse Method at the KATRIN Experiment.” The European Physical Journal C, vol. 78, no. 9, Sept. 2018. © 2018 The AuthorsUnited States. Department of Energy (DE-FG02-97ER41020)United States. Department of Energy (DE-FG02-94ER40818)United States. Department of Energy (DE-SC0004036)United States. Department of Energy (DE-FG02-97ER41033)United States. Department of Energy (DE-FG02-97ER41041)United States. Department of Energy (DEAC02-05CH11231)United States. Department of Energy (DE-SC0011091
    corecore