149 research outputs found

    Facial Expression Recognition Using Diagonal Crisscross Local Binary Pattern

    Get PDF
    Facial expression analysis is a noteworthy and challenging problem in the field of Computer Vision, Human-Computer Interaction and Image Analysis. For accomplishing FER, it is very difficult to acquire an effective facial description of the original facial images. The Local Binary Pattern (LBP) which captures facial attributes locally from the images is broadly used for facial expression recognition. But conventional LBP has some limitations. To overcome the limitations, novel approach for Facial Expression Recognition based Diagonal Crisscross Local Binary Pattern (DCLBP). It is based on the idea that pixel variations in diagonal as well as vertical and horizontal (crisscross) should be taken as an image feature in the neighborhood different from the other conventional approaches.The Chi-square distance method is used to classify various expressions. To enhance the recognition rate and reduce the classification time, weighted mask is employed to label the particular components in the face like eyebrow, mouth and eye with larger weights than the other parts of the face. The results of comparison showed the performance of the suggested approach comparing to the other approaches and the experimental results on the databases JAFFE and CK exhibited the better recognition rate

    Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications

    Get PDF
    The exploration of new natural fibers in the field of polymer composites can contribute to increase the invention of natural reinforcements and expand their use in possible applications. In the present work, the physico-chemical, thermal, tensile and morphological properties of Furcraea foetida (FF) fiber are presented for the first time. Chemical analysis results shows that FF has relatively higher cellulose (68.35%) with lower hemicelluloses (11.46%) and lignin (12.32%). Structural analysis of FF was conducted by Fourier transform infrared and 13C (CP-MAS) nuclear magnetic resonance spectroscopy. X-ray diffraction (XRD) analysis evidenced that FF has crystallinity index of 52.6% with crystalline size of 28.36 nmThe surface morphology of FF was investigated by scanning electron microscopy (SEM), energy dispersive X-ray micro analyzer (EDX) and atomic force microscopy (AFM). The thermogravimetric analysis (TGA) reveals thermal constancy of the fiber upto 320.5 °C with the kinetic activation energy of 66.64 kJ/mol, which can be used as reinforcements in thermoplastic green composite whose working temperatures is below 300 °C. The FF results were compared with those of other natural fibers, and indicated as a suitable alternative source for composite manufacture

    "In situ" hard mask materials: a new methodology for creation of vertical silicon nanopillar and nanowire arrays

    Get PDF
    A novel, simple and in situ hard mask technology that can be used to develop high aspect ratio silicon nanopillar and nanowire features on a substrate surface is demonstrated. The technique combines a block copolymer inclusion method that generates nanodot arrays on substrate and an inductively coupled plasma (ICP) etch processing step to fabricate Si nanopillar and nanowire arrays. Iron oxide was found to be an excellent resistant mask over silicon under the selected etching conditions. Features of a very high aspect ratio can be created by this method. The nanopillars have uniform diameter and smooth sidewalls throughout their entire length. The diameter (15–27 nm) and length of the nanopillars can be tuned easily. Different spectroscopic and microscopic techniques were used to examine the morphology and size, surface composition and crystallinity of the resultant patterns. The methodology developed may have important technological applications and provide an inexpensive manufacturing route to nanodimensioned topographical patterns. The high aspect ratio of the features may have importance in the area of photonics and the photoluminescence properties are found to be similar to those of surface-oxidized silicon nanocrystals and porous silicon

    Fabrication of ordered, large scale, horizontally aligned Si nanowire arrays based on an in-situ hard mask block copolymer approach

    Get PDF
    A simple technique is demonstrated to fabricate horizontal, uniform, and hexagonally arranged Sinanowire arrays with controlled orientation and density at spatially well defined locations on a substrate based on an in situ hard-mask pattern-formation approach by microphase-separated block-copolymer thin films. The technique may have significant application in the manufacture of transistor circuitry

    A highly efficient sensor platform using simply manufactured nanodot patterned substrates

    Get PDF
    Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H\u1d7e4O\u1d7e4) detection. The work demonstrates that BCP systems can be used as a highly efficient, flexible methodology for creating functional surfaces of materials. Highly dense iron oxide nanodots arrays that mimicked the original BCP pattern were prepared by an ‘insitu’ BCP inclusion methodology using poly(styrene)-\u1d623\u1d62d\u1d630\u1d624\u1d62c-poly(ethylene oxide) (PS-\u1d623-PEO). The electrochemical behaviour of these densely packed arrays of iron oxide nanodots fabricated by two different molecular weight PS-\u1d623-PEO systems was studied. The dual detection of EtOH and (H\u1d7e4O\u1d7e4) was clearly observed. The as-prepared nanodots have good long term thermal and chemical stability at the substrate and demonstrate promising electrocatalytic performance

    Ethyl 4-[2-(3,5-dimethyl-4-oxo-2,6-diphenyl­piperidin-1-yl)-2-oxoeth­yl]piperazine-1-carboxyl­ate

    Get PDF
    In the title compound, C28H35N3O4, the piperidine ring adopts a boat conformation while the piperazine ring adopts a chair conformation with an equatorial orientation of the phenyl groups. The dihedral angle between the mean planes of the benzene rings is 74.14 (8)°. The mol­ecular conformation is stabilized by a weak intra­molecular C—H⋯N inter­action and the crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions

    Streptomyces sp. BV410 isolate from chamomile rhizosphere soil efficiently produces staurosporine with antifungal and antiangiogenic properties

    Get PDF
    Applying a bioactivity-guided isolation approach, staurosporine was separated and identified as the active principle in the culture extract of the new isolate Streptomyces sp. BV410 collected from the chamomile rhizosphere. The biotechnological production of staurosporine by strain BV410 was optimized to yield 56 mg/L after 14 days of incubation in soy flour-glucose-starch-mannitol-based fermentation medium (JS). The addition of FeSO4 significantly improved the staurosporine yield by 30%, while the addition of ZnSO4 significantly reduced staurosporine yield by 62% in comparison with the starting conditions. Although staurosporine was first isolated in 1977 from Lentzea albida (now Streptomyces staurosporeus) and its potent kinase inhibitory effect has been established, here, the biological activity of this natural product was assessed in depth in vivo using a selection of transgenic zebrafish (Danio rerio) models, including Tg(fli1:EGFP) with green fluorescent protein-labeled endothelial cells allowing visualization and monitoring of blood vessels. This confirmed a remarkable antiangiogenic activity of the compound at doses of 1 ng/ml (2.14 nmol/L) which is below doses inducing toxic effects (45 ng/ml; 75 nmol/L). A new, efficient producing strain of commercially significant staurosporine has been described along with optimized fermentation conditions, which may lead to optimization of the staurosporine scaffold and its wider applicability

    Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: magnetic studies and application

    Get PDF
    Highly dense hexagonally arranged iron oxide nanodots array were fabricated using PS-b-PEO self-assembled patterns. The copolymer molecular weight, composition and choice of annealing solvent/s allows dimensional and structural control of the nanopatterns at large scale. A mechanism is proposed to create scaffolds through degradation and/or modification of cylindrical domains. A methodology based on selective metal ion inclusion and subsequent processing was used to create iron oxide nanodots array. The nanodots have uniform size and shape and their placement mimics the original self-assembled nanopatterns. For the first time these precisely defined and size selective systems of ordered nanodots allow careful investigation of magnetic properties in dimensions from 50 nm to 10 nm, which delineate the nanodots are superparamagnetic, well-isolated and size monodispersed. This diameter/spacing controlled iron oxide nanodots systems were demonstrated as a resistant mask over silicon to fabricate densely packed, identical ordered, high aspect ratio silicon nanopillars and nanowire features

    Novel Transaminase and Laccase from Streptomyces spp. Using Combined Identification Approaches

    Get PDF
    Three Streptomyces sp. strains with a multitude of target enzymatic activities confirmed by functional screening, namely BV129, BV286 and BV333, were subjected to genome sequencing aiming at the annotation of genes of interest, in-depth bioinformatics characterization and functional expression of the biocatalysts. A whole-genome shotgun sequencing followed by de novo genome assembly and annotation was performed revealing genomes of 6.4, 9.4 and 7.3 Mbp, respectively. Functional annotation of the proteins of interest resulted in between 2047 and 2763 putative targets. Among the various enzymatic activities that the three Streptomyces strains demonstrated to produce by functional screening, we focused our attention on transaminases (TAs) and laccases due to their high biocatalytic potential. Bioinformatics search allowed the identification of a putative TA from Streptomyces sp. BV333 as a potentially novel broad substrate scope TA and a putative laccase from Streptomyces sp. BV286 as potentially novel blue multicopper oxidase. The two sequences were cloned and overexpressed in Escherichia coli and the two novel enzymes, transaminase Sbv333-TA and laccase Sbv286-LAC, were characterized. Interestingly, both enzymes resulted to be exceptionally thermostable, Sbv333-TA showing a melting temperature (T-M = 85 degrees C) only slightly lower compared to the T-M of the most thermostable transaminases described to date (87-88 degrees C) and Sbv286-LAC being even thermoactivated at temperature gt 60 degrees C. Moreover, Sbv333-TA showed a broad substrate scope and remarkably demonstrated to be active in the transamination of beta-ketoesters, which are rarely accepted by currently known TAs. On the other hand, Sbv286-LAC showed an improved activity in the presence of the cosolvent acetonitrile. Overall, it was shown that a combination of approaches from standard microbiological and biochemical screens to genome sequencing and analysis is required to afford novel and functional biocatalysts
    corecore