18 research outputs found

    Full-field swept-source optical coherence tomography and neural tissue classification for deep brain imaging

    Get PDF
    Optical coherence tomography can differentiate brain regions with intrinsic contrast and at a micron scale resolution. Such a device can be particularly useful as a realtime neurosurgical guidance tool. We present, to our knowledge, the first full-field swept-source optical coherence tomography system operating near a wavelength of 1310 nm. The proof-of-concept system was integrated with an endoscopic probe tip, that is compatible with deep brain stimulation keyhole neurosurgery. Neuroimaging experiments were performed on ex vivo brain tissues and in vivo in rat brains. Using classification algorithms involving texture features and optical attenuation, images were successfully classified into three brain tissue types

    Optical and thermal simulations for the design of optodes for minimally invasive optogenetics stimulation or photomodulation of deep and large cortical areas in non-human primate brain

    No full text
    International audienceThe use of optogenetics or photobiomodulation in non-human primate (NHP) requires the ability to noninvasively stimulate large and deep cortical brain tissues volumes. In this context, the optical and geometrical parameters of optodes are critical. Methods and general guidelines to optimize these parameters have to be defined. Objective. We propose the design of an optode for safe and efficient optical stimulation of a large volume of NHP cortex, down to 3–5 mm depths without inserting fibers into the cortex. Approach. Monte Carlo simulations of optical and thermal transport have been carried out using the Geant4 application for tomographic emission (GATE) platform. Parameters such as the fiber diameter, numerical aperture, number of fibers and their geometrical arrangement have been studied. Optimal hardware parameters are proposed to obtain homogeneous fluence above the fluence threshold for opsin activation without detrimental thermal effects. Main results. The simulations show that a large fiber diameter and a large numerical aperture are preferable since they allow limiting power concentration and hence the resulting thermal increases at the brain surface. To obtain a volume of 200–500 mm3 of brain tissues receiving a fluence above the opsin activation threshold for optogenetics or below a phototocixity threshold for photobiomodulation, a 4 fibers configuration is proposed. The optimal distance between the fibers was found to be 4 mm. A practical implementation of the optode has been performed and the corresponding fluence and thermal maps have been simulated. Significance. The present study defines a method to optimize the design of optode and the choice of stimulation parameters for optogenetics and more generally light delivery to deep and large volumes of tissues in NHP brain with a controlled irradiance dosimetry. The general guidelines are the use of silica fibers with a large numerical aperture and a large diameter. The combination of several fibers is required if large volumes need to be stimulated while avoiding thermal effect

    A smartphone-based clinical decision support system for tremor assessment

    No full text
    Tremor severity assessment is an important element for the diagnosis and treatment decision-making process of patients suffering from Essential Tremor (ET). Classically, questionnaires like the ETRS and QUEST surveys have been used to assess tremor severity. Recently, attention around computerized tremor analysis has grown. In this study, we use regression trees to map the relationship between tremor data that is collected using the TREMOR12 smartphone application with ETRS and QUEST scores. We aim to develop a model that is able to automatically assess tremor severity of patients suffering from Essential Tremor without the use of more subjective questionnaires. This study shows that tremor data gathered using the TREMOR12 application is useful for constructing machine learning models that can be used to support the diagnosis and monitoring of patients who suffer from Essential Tremor.SCOPUS: cp.kDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Optogenetic Tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates

    No full text
    International audienceDissecting neural circuitry in non-human primates (NHP) is crucial to identify potential neuromodulation anatomical targets for the treatment of pharmacoresistant neuropsychiatric diseases by electrical neuromodulation. How targets of deep brain stimulation (DBS) and cortical targets of transcranial magnetic stimulation (TMS) compare and might complement one another is an important question. Combining optogenetics and tractography may enable anatomo-functional characterization of large brain cortico-subcortical neural pathways. For the proof-of-concept this approach was used in the NHP brain to characterize the motor cortico-subthalamic pathway (m_CSP) which might be involved in DBS action mechanism in Parkinson's disease (PD). Rabies-G-pseudotyped and Rabies-G-VSVg-pseudotyped EIAV lentiviral vectors encoding the opsin ChR2 gene were stereotaxically injected into the subthalamic nucleus (STN) and were retrogradely transported to the layer of the motor cortex projecting to STN. A precise anatomical mapping of this pathway was then performed using histologyguided high angular resolution MRI tractography guiding accurately cortical photostimulation of m_CSP origins. Photoexcitation of m_CSP axon terminals or m_CSP cortical origins modified the spikes distribution for photosensitive STN neurons firing rate in non-equivalent ways. Optogenetic tractography might help design preclinical neuromodulation studies in NHP models of neuropsychiatric disease choosing the most appropriate target for the tested hypothesis. Designing electrical neuromodulation treatments that are more specific, efficient and therefore safer for neuropsychiatric diseases requires an accurate understanding of the brain anatomy and its relationship to function. The use of non-human primates (NHP) as a model to validate novel invasive therapeutic neuromodulatio

    Optogenetic Tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates

    No full text
    Abstract Dissecting neural circuitry in non-human primates (NHP) is crucial to identify potential neuromodulation anatomical targets for the treatment of pharmacoresistant neuropsychiatric diseases by electrical neuromodulation. How targets of deep brain stimulation (DBS) and cortical targets of transcranial magnetic stimulation (TMS) compare and might complement one another is an important question. Combining optogenetics and tractography may enable anatomo-functional characterization of large brain cortico-subcortical neural pathways. For the proof-of-concept this approach was used in the NHP brain to characterize the motor cortico-subthalamic pathway (m_CSP) which might be involved in DBS action mechanism in Parkinson’s disease (PD). Rabies-G-pseudotyped and Rabies-G-VSVg-pseudotyped EIAV lentiviral vectors encoding the opsin ChR2 gene were stereotaxically injected into the subthalamic nucleus (STN) and were retrogradely transported to the layer of the motor cortex projecting to STN. A precise anatomical mapping of this pathway was then performed using histology-guided high angular resolution MRI tractography guiding accurately cortical photostimulation of m_CSP origins. Photoexcitation of m_CSP axon terminals or m_CSP cortical origins modified the spikes distribution for photosensitive STN neurons firing rate in non-equivalent ways. Optogenetic tractography might help design preclinical neuromodulation studies in NHP models of neuropsychiatric disease choosing the most appropriate target for the tested hypothesis

    Diario oficial del Ministerio de Marina: Año LXV Número 113 - 1972 mayo 18

    Get PDF
    <p>3A, ROC curves for rest total power spectra (TPS A) and postural total power spectra (TPS B) comparing tremulous and healthy subjects. 3B, ROC curves for relative energy feature (RE) and Relative Power Contribution to the first harmonic feature (RPC). Blue and red crosses mark the highest discriminative threshold for each ROC curve. AUC, area under the curve. CI, confidence interval, followed by sensitivity and specificity for the given value.</p
    corecore