27 research outputs found

    evidence from a systematic review and pooled lesion analysis

    Get PDF
    Despite claims that lesional mania is associated with right-hemisphere lesions, supporting evidence is scarce, and association with specific brain areas has not been demonstrated. Here, we aimed to test whether focal brain lesions in lesional mania are more often right- than left-sided, and if lesions converge on areas relevant to mood regulation. We thus performed a systematic literature search (PROSPERO registration CRD42016053675) on PubMed and Web-Of-Science, using terms that reflect diagnoses and structures of interest, as well as lesional mechanisms. Two researchers reviewed the articles separately according to PRISMA Guidelines, selecting reports of adult-onset hypomania, mania or mixed state following a focal brain lesion, for pooled-analyses of individual patient data. Eligible lesion images were manually traced onto the corresponding MNI space slices, and lesion topography analyzed using standard brain atlases. Using this approach, data from 211 lesional mania patients was extracted from 114 reports. Among 201 cases with focal lesions, more patients had lesions involving exclusively the right (60.7%) than exclusively the left (11.4%) hemisphere. In further analyses of 56 eligible lesion images, while findings should be considered cautiously given the potential for selection bias of published lesion images, right-sided predominance of lesions was confirmed across multiple brain regions, including the temporal lobe, fusiform gyrus and thalamus. These, and several frontal lobe areas, were also identified as preferential lesion sites in comparisons with control lesions. Such pooled-analyses, based on the most comprehensive dataset of lesional mania available to date, confirm a preferential association with right-hemisphere lesions, while suggesting that several brain areas/circuits, relevant to mood regulation, are most frequently affected.publishersversionpublishe

    Mapping mania symptoms based on focal brain damage

    Get PDF
    BACKGROUND. Although mania is characteristic of bipolar disorder, it can also occur following focal brain damage. Such cases may provide unique insight into brain regions responsible for mania symptoms and identify therapeutic targets. METHODS. Lesion locations associated with mania were identified using a systematic literature search (n = 41) and mapped onto a common brain atlas. The network of brain regions functionally connected to each lesion location was computed using normative human connectome data (resting-state functional MRI, n = 1000) and contrasted with those obtained from lesion locations not associated with mania (n = 79). Reproducibility was assessed using independent cohorts of mania lesions derived from clinical chart review (n = 15) and of control lesions (n = 490). Results were compared with brain stimulation sites previously reported to induce or relieve mania symptoms. RESULTS. Lesion locations associated with mania were heterogeneous and no single brain region was lesioned in all, or even most, cases. However, these lesion locations showed a unique pattern of functional connectivity to the right orbitofrontal cortex, right inferior temporal gyrus, and right frontal pole. This connectivity profile was reproducible across independent lesion cohorts and aligned with the effects of therapeutic brain stimulation on mania symptoms. CONCLUSION. Brain lesions associated with mania are characterized by a specific pattern of brain connectivity that lends insight into localization of mania symptoms and potential therapeutic targets. FUNDING. Fundação para a Ciência e Tecnologia (FCT), Harvard Medical School DuPont-Warren Fellowship, Portuguese national funds from FCT and Fundo Europeu de Desenvolvimento Regional, Child Neurology Foundation Shields Research, Sidney R. Baer, Jr. Foundation, Nancy Lurie Marks Foundation, Mather's Foundation, and the NIH.publishersversionpublishe

    Anatomo-functional characterization of the motor corticosubthalamic pathway of the non human primate : study by optogenetics, electrophysiology, 3D-histology and tractography. Implications for neuromodulation strategies for the treatment of Parkinson's disease

    No full text
    La maladie de Parkinson (MP) est la seconde maladie neurodégénérative la plus répandue. Les symptômes moteurs répondent initialement bien aux médicaments dopaminergiques. Toutefois, des complications motrices de ces médicaments finissent par survenir. Certains patients se voient alors proposer un traitement neurochirurgical par stimulation cérébrale profonde (SCP) et chronique du Noyau Subthalamique (NST). Plusieurs études suggèrent que la modulation du faisceau cortico-subthalamique moteur explique au moins en partie l’efficacité de la SCP du NST. Approfondir la compréhension du mécanisme d’action de la SCP du NST pour le traitement de la MP devrait permettre d’optimiser le rapport innocuité/efficacité de cette procédure qui s’adresse à des dizaines de milliers de patients dans le monde. L’objectif primaire de cette thèse est de caractériser le faisceau cortico-subthalamique moteur sur les plans anatomique et fonctionnel chez le primate non humain. Les objectifs secondaires sont : Permettre la visualisation directe et en conditions stéréotaxiques du NST chez le primate non humain et le patient parkinsonien - Mettre au point une méthodologie permettant de caractériser sur les plans anatomique et fonctionnel tout faisceau de fibres entre deux régions cérébrales anatomiquement distinctes, chez le primate non humain - Elaborer une loi de commande pour la stimulation du NST par optogénétique et en boucle fermée, afin de détruire sélectivement les oscillations béta et tester l’hypothèse de leur rôle dans l’émergence des symptômes moteurs de la MP...Parkinson’s Disease (PD) is the second most widespread neurodegenerative disease. Motor symptoms initially respond well to dopaminergic medecines ; however, motor complications will eventually occur. Some patients are then proposed a neurosurgical treatment by chronical electrical deep brain stimulation (DBS) of the subthalamic nucleus (STN). Several studies suggested that the modulation of the motor cortico-subthalamic bundle might explain the efficacy of STN DBS, at least to a certain extent. A better understanding of the mechanism of action of DBS of the STN in order to treat PD should help to optimize the safety/efficacy of this surgical procedure from which tens of thousands of patients could benefit all over the world.The main purpose of the present thesis is to characterize, both anatomically and functionally, the motor cortico-subthalamic bundle in non-human primates. Secundary objectives are : (1) to allow the direct visualization, under stereotactic conditions, of the STN of non-human primates and of patients with PD ; (2) to develop a methodology enabling to characterize, both anatomically and functionally, any fiber bundle between two anatomically distinct cerebral areas, in non-human primates ; (3) to establish a command law for closed-loop stimulation of STN by optogenetics, in order to selectively destroy beta-oscillations and assess the hypothesis of their role in the occurrence of motor symptoms in PD..

    De l’Automatique dans les synapses - Stratégies de stimulation cérébrale en boucle fermée pour le traitement de maladies neurologiques

    No full text
    National audienc

    Robust stabilization of delayed neural fields with partial measurement and actuation

    No full text
    Extended preprint of the eponym paper to appear in AutomaticaNeural fields are integro-differential equations describing spatiotemporal activity of neuronal populations. When considering finite propagation speed of action potentials, neural fields are affected by space-dependent delays. In this paper, we provide conditions under which such dynamics can be robustly stabilized by a proportional feedback acting only on a portion of the neuronal population and by relying on measurements of this subpopulation only. To that aim, in line with recent works, we extend the concept of input-to-state stability (ISS) to generic nonlinear delayed spatiotemporal dynamics and provide a small-gain result relying on Lyapunov-Krasovskii functionals. Exploiting the robustness properties induced by ISS, we provide conditions under which a uniform control signal can be used for the whole controlled subpopulation and we analyze the robustness of the proposed strategy to measurement and actuation delays. These theoretical findings are compared to simulation results in a model of pathological oscillations generation in Parkinson's disease

    Closed-loop stimulation of a delayed neural fields model of parkinsonian STN-GPe network: a theoretical and computational study

    Get PDF
    International audienceSeveral disorders are related to pathological brain oscillations. In the case of Parkinson's disease, sustained low-frequency oscillations (especially in the β-band, 13–30 Hz) correlate with motor symptoms. It is still under debate whether these oscillations are the cause of parkinsonian motor symptoms. The development of techniques enabling selective disruption of these β-oscillations could contribute to the understanding of the underlying mechanisms, and could be exploited for treatments. A particularly appealing technique is Deep Brain Stimulation (DBS). With clinical electrical DBS, electrical currents are delivered at high frequency to a region made of potentially heterogeneous neurons (the subthalamic nucleus (STN) in the case of Parkinson's disease). Even more appealing is DBS with optogenetics, which is until now a preclinical method using both gene transfer and deep brain light delivery and enabling neuromodulation at the scale of one given neural network. In this work, we rely on delayed neural fields models of STN and the external Globus Pallidus (GPe) to develop, theoretically validate and test in silico a closed-loop stimulation strategy to disrupt these sustained oscillations with optogenetics. First, we rely on tools from control theory to provide theoretical conditions under which sustained oscillations can be attenuated by a closed-loop stimulation proportional to the measured activity of STN. Second, based on this theoretical framework, we show numerically that the proposed closed-loop stimulation efficiently attenuates sustained oscillations, even in the case when the photosensitization effectively affects only 50% of STN neurons. We also show through simulations that oscillations disruption can be achieved when the same light source is used for the whole STN population. We finally test the robustness of the proposed strategy to possible acquisition and processing delays, as well as parameters uncertainty
    corecore