48 research outputs found
Administration et gestion des contrats XL
Les grands contrats de travaux génèrent un grand nombre de commandes (OSVC) passées par un grand nombre de responsables techniques. Ils sont généralement basés sur des bordereaux de prix associés à un éventail de conditions économiques adaptées aux besoins complexes et variés des multiples utilisateurs du CERN nécessitant des calculs sophistiqués. L'administration des commandes, le suivi des travaux et de la facturation doivent répondre aux besoins de tous les acteurs. Les responsables techniques doivent jouir de la plus large indépendance administrative dans le respect des règlements CERN et des conditions contractuelles. Le contrôle des métrés et décomptes doit être rigoureux et d'une traçabilité complète. L'utilisation des bases de données Oracle a déjà permis l'intégration des données administratives et techniques. Le Web nous invite à une communication totale et transparente entre les utilisateurs, les services techniques et les contractants. De nouveaux types de contrat sont à inventer dans la perspective des futures applications, ils devraient être encore plus faciles à utiliser et plus intégrés avec les outils techniques
Exactly Integrable Dynamics of Interface between Ideal Fluid and Light Viscous Fluid
It is shown that dynamics of the interface between ideal fluid and light
viscous fluid is exactly integrable in the approximation of small surface
slopes for two-dimensional flow. Stokes flow of viscous fluid provides a
relation between normal velocity and pressure at interface. Surface elevation
and velocity potential of ideal fluid are determined from two complex Burgers
equations corresponding to analytical continuation of velocity potential at the
interface into upper and lower complex half planes, respectively. The interface
loses its smoothness if complex singularities (poles) reach the interface.Comment: 5 pages, 2 figures; submitted to Physics Letter
High frame-rate cardiac ultrasound imaging with deep learning
Cardiac ultrasound imaging requires a high frame rate in order to capture
rapid motion. This can be achieved by multi-line acquisition (MLA), where
several narrow-focused received lines are obtained from each wide-focused
transmitted line. This shortens the acquisition time at the expense of
introducing block artifacts. In this paper, we propose a data-driven
learning-based approach to improve the MLA image quality. We train an
end-to-end convolutional neural network on pairs of real ultrasound cardiac
data, acquired through MLA and the corresponding single-line acquisition (SLA).
The network achieves a significant improvement in image quality for both
and line MLA resulting in a decorrelation measure similar to that of SLA
while having the frame rate of MLA.Comment: To appear in the Proceedings of MICCAI, 201
A note on the extension of the polar decomposition for the multidimensional Burgers equation
It is shown that the generalizations to more than one space dimension of the
pole decomposition for the Burgers equation with finite viscosity and no force
are of the form u = -2 viscosity grad log P, where the P's are explicitly known
algebraic (or trigonometric) polynomials in the space variables with polynomial
(or exponential) dependence on time. Such solutions have polar singularities on
complex algebraic varieties.Comment: 3 pages; minor formatting and typos corrected. Submitted to Phys.
Rev. E (Rapid Comm.
Entire solutions of hydrodynamical equations with exponential dissipation
We consider a modification of the three-dimensional Navier--Stokes equations
and other hydrodynamical evolution equations with space-periodic initial
conditions in which the usual Laplacian of the dissipation operator is replaced
by an operator whose Fourier symbol grows exponentially as \ue ^{|k|/\kd} at
high wavenumbers . Using estimates in suitable classes of analytic
functions, we show that the solutions with initially finite energy become
immediately entire in the space variables and that the Fourier coefficients
decay faster than \ue ^{-C(k/\kd) \ln (|k|/\kd)} for any . The
same result holds for the one-dimensional Burgers equation with exponential
dissipation but can be improved: heuristic arguments and very precise
simulations, analyzed by the method of asymptotic extrapolation of van der
Hoeven, indicate that the leading-order asymptotics is precisely of the above
form with . The same behavior with a universal constant
is conjectured for the Navier--Stokes equations with exponential
dissipation in any space dimension. This universality prevents the strong
growth of intermittency in the far dissipation range which is obtained for
ordinary Navier--Stokes turbulence. Possible applications to improved spectral
simulations are briefly discussed.Comment: 29 pages, 3 figures, Comm. Math. Phys., in pres
