153 research outputs found

    A long winter for the Red Queen: rethinking the evolution of seasonal migration

    Full text link
    This paper advances an hypothesis that the primary adaptive driver of seasonal migration is maintenance of site fidelity to familiar breeding locations. We argue that seasonal migration is therefore principally an adaptation for geographic persistence when confronted with seasonality – analogous to hibernation, freeze tolerance, or other organismal adaptations to cyclically fluctuating environments. These ideas stand in contrast to traditional views that bird migration evolved as an adaptive dispersal strategy for exploiting new breeding areas and avoiding competitors. Our synthesis is supported by a large body of research on avian breeding biology that demonstrates the reproductive benefits of breeding‐site fidelity. Conceptualizing migration as an adaptation for persistence places new emphasis on understanding the evolutionary trade‐offs between migratory behaviour and other adaptations to fluctuating environments both within and across species. Seasonality‐induced departures from breeding areas, coupled with the reproductive benefits of maintaining breeding‐site fidelity, also provide a mechanism for explaining the evolution of migration that is agnostic to the geographic origin of migratory lineages (i.e. temperate or tropical). Thus, our framework reconciles much of the conflict in previous research on the historical biogeography of migratory species. Although migratory behaviour and geographic range change fluidly and rapidly in many populations, we argue that the loss of plasticity for migration via canalization is an overlooked aspect of the evolutionary dynamics of migration and helps explain the idiosyncratic distributions and migratory routes of long‐distance migrants. Our synthesis, which revolves around the insight that migratory organisms travel long distances simply to stay in the same place, provides a necessary evolutionary context for understanding historical biogeographic patterns in migratory lineages as well as the ecological dynamics of migratory connectivity between breeding and non‐breeding locations.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149253/1/brv12476.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149253/2/brv12476_am.pd

    Quantitative real-time RT-PCR of CD24 mRNA in the detection of prostate cancer

    Get PDF
    BACKGROUND: Gene expression profiling has recently shown that the mRNA for CD24 is overexpressed in prostate carcinomas (Pca) compared to benign or normal prostate epithelial tissues. Immunohistochemical studies have reported the usefulness of anti-CD24 for detecting prostate cancer over the full range of prostate specimens encountered in surgical pathology, e.g. needle biopsies, transurethral resection of prostate chips, or prostatectomies. It is a small mucin-like cell surface protein and thus promises to become at least a standard adjunctive stain for atypical prostate biopsies. We tested the usefulness of real-time RT-PCR for specific and sensitive detection of CD24 transcripts as a supplementary measure for discriminating between malignant and benign lesions in prostatic tissues. METHODS: Total RNA was isolated from snap-frozen chips in 55 cases of benign prostatic hyperplasia (BPH) and from frozen sections in 59 prostatectomy cases. The latter contain at least 50% malignant epithelia. Relative quantification of CD24 transcripts was performed on the LightCycler instrument using hybridization probes for detection and porphobilinogen deaminase transcripts (PBGD) for normalization. RESULTS: Normalized CD24 transcript levels showed an average 2.69-fold increase in 59 Pca-cases (mean 0.21) when compared to 55 cases of BPH (mean 0.08). This difference was highly significant (p < 0.0001). The method has a moderate specificity (47.3%) but a high sensitivity (86.4%) if the cutoff is set at 0.0498. CD24 expression levels among Pca cases were not statistically associated with the tumor and lymph-node stage, the grading (WHO), the surgical margins, or the Gleason score. CONCLUSION: The present study demonstrates the feasibility of quantitative CD24 RNA transcript detection in prostatic tissues even without previous laser microdissection

    Migration Patterns, Use of Stopover Areas, and Austral Summer Movements of Swainson\u27s Hawks

    Get PDF
    From 1995 to 1998, we tracked movements of adult Swainson’s Hawks (Buteo swainsoni), using satellite telemetry to characterize migration, important stopover areas, and movements in the austral summer. We tagged 46 hawks from July to September on their nesting grounds in seven U.S. states and two Canadian provinces. Swainson’s Hawks followed three basic routes south on a broad front, converged along the east coast of central Mexico, and followed a concentrated corridor to a communal area in central Argentina for the austral summer. North of 20°N, southward and northward tracks differed little for individuals from east of the continental divide but differed greatly (up to 1700 km) for individuals from west of the continental divide. Hawks left the breeding grounds mid-August to mid-October; departure dates did not differ by location, year, or sex. Southbound migration lasted 42 to 98 days, northbound migration 51 to 82 days. Southbound, 36% of the Swainson’s Hawks departed the nesting grounds nearly 3 weeks earlier than the other radio-marked hawks and made stopovers 9.0–26.0 days long in seven separate areas, mainly in the southern Great Plains, southern Arizona and New Mexico, and northcentral Mexico. The birds stayed in their nonbreeding range for 76 to 128 days. All used a core area in central Argentina within 23% of the 738 800-km2 austral summer range, where they frequently moved long distances (up to 1600 km). Conservation of Swainson’s Hawks must be an international effort that considers habitats used during nesting and non-nesting seasons, including migration stopovers

    A genome-wide association study of the longitudinal course of executive functions

    Get PDF
    Executive functions are metacognitive capabilities that control and coordinate mental processes. In the transdiagnostic PsyCourse Study, comprising patients of the affective-to-psychotic spectrum and controls, we investigated the genetic basis of the time course of two core executive subfunctions: set-shifting (Trail Making Test, part B (TMT-B)) and updating (Verbal Digit Span backwards) in 1338 genotyped individuals. Time course was assessed with four measurement points, each 6 months apart. Compared to the initial assessment, executive performance improved across diagnostic groups. We performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with performance change over time by testing for SNP-by-time interactions using linear mixed models. We identified nine genome-wide significant SNPs for TMT-B in strong linkage disequilibrium with each other on chromosome 5. These were associated with decreased performance on the continuous TMT-B score across time. Variant rs150547358 had the lowest P value = 7.2 × 10(−10) with effect estimate beta = 1.16 (95% c.i.: 1.11, 1.22). Implementing data of the FOR2107 consortium (1795 individuals), we replicated these findings for the SNP rs150547358 (P value = 0.015), analyzing the difference of the two available measurement points two years apart. In the replication study, rs150547358 exhibited a similar effect estimate beta = 0.85 (95% c.i.: 0.74, 0.97). Our study demonstrates that longitudinally measured phenotypes have the potential to unmask novel associations, adding time as a dimension to the effects of genomics

    Dissecting the First Transcriptional Divergence During Human Embryonic Development

    Get PDF
    The trophoblast cell lineage is specified early at the blastocyst stage, leading to the emergence of the trophectoderm and the pluripotent cells of the inner cell mass. Using a double mRNA amplification technique and a comparison with transcriptome data on pluripotent stem cells, placenta, germinal and adult tissues, we report here some essential molecular features of the human mural trophectoderm. In addition to genes known for their role in placenta (CGA, PGF, ALPPL2 and ABCG2), human trophectoderm also strongly expressed Laminins, such as LAMA1, and the GAGE Cancer/Testis genes. The very high level of ABCG2 expression in trophectoderm, 7.9-fold higher than in placenta, suggests a major role of this gene in shielding the very early embryo from xenobiotics. Several genes, including CCKBR and DNMT3L, were specifically up-regulated only in trophectoderm, indicating that the trophoblast cell lineage shares with the germinal lineage a transient burst of DNMT3L expression. A trophectoderm core transcriptional regulatory circuitry formed by 13 tightly interconnected transcription factors (CEBPA, GATA2, GATA3, GCM1, KLF5, MAFK, MSX2, MXD1, PPARD, PPARG, PPP1R13L, TFAP2C and TP63), was found to be induced in trophectoderm and maintained in placenta. The induction of this network could be recapitulated in an in vitro trophoblast differentiation model

    Association of polygenic score and the involvement of cholinergic and glutamatergic pathways with lithium treatment response in patients with bipolar disorder

    Get PDF
    Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental health&nbsp;disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium’s possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N = 2367) and replicated in the combined PsyCourse (N = 89) and BipoLife (N = 102) studies. The associations of Li+PGS and lithium treatment response — defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P &lt; 0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P = 9.8 × 10−12, R2 = 1.9%) and continuous (P = 6.4 × 10−9, R2 = 2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22–5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P = 3.9 × 10−4, R2 = 0.9%), but not for the continuous outcome (P = 0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment

    Characterisation of age and polarity at onset in bipolar disorder

    Get PDF
    Background Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. Aims To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. Method Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. Results Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (ÎČ = −0.34 years, s.e. = 0.08), major depression (ÎČ = −0.34 years, s.e. = 0.08), schizophrenia (ÎČ = −0.39 years, s.e. = 0.08), and educational attainment (ÎČ = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. Conclusions AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses

    Unexpected diversity in socially synchronized rhythms of shorebirds

    Get PDF
    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within-and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.</p
    • 

    corecore