128 research outputs found

    The quantization of the chiral Schwinger model based on the BFT-BFV formalism II

    Get PDF
    We apply an improved version of Batalin-Fradkin-Tyutin (BFT) Hamiltonian method to the a=1 chiral Schwinger Model, which is much more nontrivial than the a>1.one.Furthermore,throughthepathintegralquantization,wenewlyresolvetheproblemofthenontrivial one. Furthermore, through the path integral quantization, we newly resolve the problem of the non-trivial \deltafunctionaswellasthatoftheunwantedFourierparameter function as well as that of the unwanted Fourier parameter \xi$ in the measure. As a result, we explicitly obtain the fully gauge invariant partition function, which includes a new type of Wess-Zumino (WZ) term irrelevant to the gauge symmetry as well as usual WZ action.Comment: 17 pages, To be published in J. Phys.

    Hamiltonian Formalism for Space-time Non-commutative Theories

    Get PDF
    Space-time non-commutative theories are non-local in time. We develop the Hamiltonian formalism for non-local field theories in d space-time dimensions by considering auxiliary d+1 dimensional field theories which are local with respect to the evolution time. The Hamiltonian path integral quantization is considered and the Feynman rules in the Lagrangian formalism are derived. The case of non-commutative \phi^3 theory is considered as an example.Comment: 6 pages, A new section is added with other comments and references. To appear in PR

    On the Path Integral Representation for Spin Systems

    Full text link
    We propose a classical constrained Hamiltonian theory for the spin. After the Dirac treatment we show that due to the existence of second class constraints the Dirac brackets of the proposed theory represent the commutation relations for the spin. We show that the corresponding partition function, obtained via the Fadeev-Senjanovic procedure, coincides with the one obtained using coherent states. We also evaluate this partition function for the case of a single spin in a magnetic field.Comment: To be published in J.Phys. A: Math. and Gen. Latex file, 12 page

    bsγb \to s \gamma decays in the Left-Right Symmetric Model

    Full text link
    We consider bsγb \to s \gamma decays in the Left-Right Symmetric Model. Values of observables sensitive to chiral structure such as the Λ\Lambda polarization in the ΛbΛγ\Lambda_b \to \Lambda \gamma decays and the mixing-induced CP asymmetries in the Bd,sM0γB_{d,s} \to M^0 \gamma decays can deviate in the LRSM significantly from the SM values. The combined analysis of PΛP_\Lambda and ACPA_{CP} as well as BR(bsγ){\cal BR}(b \to s \gamma) can be used to determine the model parameters.Comment: 16 pages with 7 figures, Version to be published in PR

    Charge asymmetry ratio as a probe of quark flavour couplings of resonant particles at the LHC

    Full text link
    We show how a precise knowledge of parton distribution functions, in particular those of the u and d quarks, can be used to constrain a certain class of New Physics models in which new heavy charged resonances couple to quarks and leptons. We illustrate the method by considering a left-right symmetric model with a W' from a SU(2)_R gauge sector produced in quark-antiquark annihilation and decaying into a charged lepton and a heavy Majorana neutrino. We discuss a number of quark and lepton mixing scenarios, and simulate both signals and backgrounds in order to determine the size of the expected charge asymmetry. We show that various quark-W' mixing scenarios can indeed be constrained by charge asymmetry measurements at the LHC, particularly at 14 TeV centre of mass energy.Comment: 14 pages, 3 figure

    Canonical Transformations and Path Integral Measures

    Full text link
    This paper is a generalization of previous work on the use of classical canonical transformations to evaluate Hamiltonian path integrals for quantum mechanical systems. Relevant aspects of the Hamiltonian path integral and its measure are discussed and used to show that the quantum mechanical version of the classical transformation does not leave the measure of the path integral invariant, instead inducing an anomaly. The relation to operator techniques and ordering problems is discussed, and special attention is paid to incorporation of the initial and final states of the transition element into the boundary conditions of the problem. Classical canonical transformations are developed to render an arbitrary power potential cyclic. The resulting Hamiltonian is analyzed as a quantum system to show its relation to known quantum mechanical results. A perturbative argument is used to suppress ordering related terms in the transformed Hamiltonian in the event that the classical canonical transformation leads to a nonquadratic cyclic Hamiltonian. The associated anomalies are analyzed to yield general methods to evaluate the path integral's prefactor for such systems. The methods are applied to several systems, including linear and quadratic potentials, the velocity-dependent potential, and the time-dependent harmonic oscillator.Comment: 28 pages, LaTe

    Vector boson pair production in e-e- collisions with polarized beams

    Get PDF
    The WW-boson pair production in eee^-e^- collisions with polarized beams is investigated. The helicity amplitudes are derived for general couplings and the conditions for a good high-energy behaviour of the cross-section are given. The results are applied to the heavy vector boson production in the context of the left-right symmetric model. The Ward identities and the equivalence theorem are also discussed.Comment: 17 pages+ 8 figures(uuencoded compressed ps-file appended), HU-SEFT R 1994-09 (the original version of the file was unreproducable in some computers

    Higgs Sector of the Minimal Left-Right Symmetric Model

    Get PDF
    We perform an exhaustive analysis of the most general Higgs sector of the minimal left-right symmetric model (MLRM). We find that the CP properties of the vacuum state are connected to the Higgs spectrum: if CP is broken spontaneously, the MLRM does not approach the Standard Model in the limit of a decoupling left-right symmetry breaking scale. Depending on the size of the CP phases scenarios with extra non-decoupling flavor-violating doublet Higgses or very light SU(2) triplet Higgses emerge, both of which are ruled out by phenomenology. For zero CP phases the non-standard Higgses decouple only if a very unnatural fine-tuning condition is fulfilled. We also discuss generalizations to a non-minimal Higgs sector.Comment: brief discussion of non-minimal Higgs sectors added, journal versio

    Bounds on the dipole moments of the tau-neutrino via the process e+eννˉγe^{+}e^{-}\rightarrow \nu \bar \nu \gamma in a 331 model

    Full text link
    We obtain limits on the anomalous magnetic and electric dipole moments of the ντ\nu_{\tau} through the reaction e+eννˉγe^{+}e^{-}\rightarrow \nu \bar \nu \gamma and in the framework of a 331 model. We consider initial-state radiation, and neglect WW and photon exchange diagrams. The results are based on the data reported by the L3 Collaboration at LEP, and compare favorably with the limits obtained in other models, complementing previous studies on the dipole moments.Comment: 13 pages, 4 figures, to be published in The European Physical J C. arXiv admin note: substantial text overlap with arXiv:hep-ph/060527

    Path Integral Approach to Two-Dimensional QCD in the Light-Front

    Full text link
    Two-dimensional quantum cromodynamics in the light-front frame is studied following hamiltonian methods. The theory is quantized using the path integral formalism and an effective theory similar to the Nambu-Jona Lasinio model is obtained. Confinement in two dimensions is derived analyzing directly the constraints in the path integral.Comment: 13pp, Plain-TeX, Si-93-10, IF-UFRJ-93-13, USM-TH-6
    corecore