1,916 research outputs found
The Wakefield District prolific and priority offender needs analysis and business case: final report
Loci Controlling Resistance to High Plains Virus and Wheat Streak Mosaic Virus in a B73 × Mo17 Population of Maize
High Plains disease has the potential to cause significant yield loss in susceptible corn (Zea mays L.) and wheat (Triticum aestivum L.) genotypes, especially in the central and western USA. The primary causal agent, High Plains virus (HPV), is vectored by wheat curl mite (WCM; Aceria tossicheila Keifer), which is also the vector of wheat streak mosaic virus (WSMV). In general, the two diseases occur together as a mixed infection in the field. The objective of this research was to characterize the inheritance of HPV and WSMV resistance using B73 (resistant to HPV and WSMV) × Mo17 (moderately susceptible to HPV and WSMV) recombinant inbred lines. A population of 129 recombinant inbred lines scored for 167 molecular markers was used to evaluate resistance to WSMV and to a mixed infection of WSMV and HPV. Loci conferring resistance to systemic movement of WSMV in plants mapped to chromosomes 3, 6, and 10, consistent with the map position of wsm2, wsm1, and wsm3, respectively. Major genes for resistance to systemic spread of HPV in doubly infected plants mapped to chromosomes 3 and 6, coincident or tightly linked with the WSMV resistance loci. Analysis of doubly infected plants revealed that chromosome 6 had a major effect on HPV resistance, consistent with our previous analysis of B73 × W64A and B73 × Wf9 populations. Quantitative trait loci (QTL) affecting resistance to localized symptom development mapped to chromosomes 4 (umc66), 5 (bnl5.40), and 6 (umc85), and accounted for 24% of the phenotypic variation. Localized symptoms may reflect the amount of mite feeding or the extent of virus spread at the point of infection. Identification of cosegregating markers may facilitate selection for HPV and WSMV resistance in corn breeding programs
Gaps and weaknesses in the global protected area network for safeguarding at-risk species
Protected areas are essential to biodiversity conservation. Creating new parks can protect larger populations and more species, yet strengthening existing parks, particularly those vulnerable to harmful human activities, is a critical but underappreciated step for safeguarding at-risk species. Here, we model the area of habitat that terrestrial mammals, amphibians, and birds have within park networks and their vulnerability to current downgrading, downsizing, or degazettement events and future land-use change. We find that roughly 70% of species analyzed have scant representation in parks, or occur within parks that are affected by shifts in formal legal protections or are vulnerable to increased human pressures. Our results also show that expanding and strengthening park networks across just 1% of the world’s land area could preserve irreplaceable habitats of 1191 species that are particularly vulnerable to extinction
Contribution of host-derived growth factors to in vivo growth of a transplantable murine mammary carcinoma.
The contribution of host-derived growth factors to tumour growth in vivo was studied using the transplantable murine mammary carcinoma, MT1, grown in syngeneic mice. Promotion of growth of the mammary carcinoma by a factor(s) from the host was evident in experiments in which the carcinoma cells were inoculated intraperitoneally. In this environment, tumours develop as multiple solid nodules, each probably arising from an individual cell or a small cluster of cells. Tumour growth was found to occur in the peritoneal cavity following inoculation of 10(3) cells, but an inoculum of as few as ten cells grew if a leucocyte-rich exudate had first been induced. To determine which host-derived growth factors might contribute to growth of MT1, extracts of the tumour were first examined for growth factor activity. Fractionation of tumour extracts by either ion-exchange chromatography or gel filtration revealed several peaks of mitogenic activity, but none of this could be attributed to epidermal growth factor (EGF). Accordingly, an anti-EGF antibody was tested as a putative inhibitor of tumour growth as any effect of this antibody could be ascribed to removal of EGF derived from the host. The antibody was found to have potent anti-tumour activity when tested against MT1 tumours that had been inoculated into the peritoneal cavity. In contrast, the antibody had little effect on growth of the discrete tumour mass which formed when MT1 was transplanted subcutaneously. The results suggest that host-derived EGF contributes to establishment of microcolonies of MT1 carcinoma within the peritoneal cavity. This may be directly, by providing growth factors to supplement those produced by the tumour until it reaches a certain critical mass to sustain autocrine growth, or indirectly, by affecting the production of other growth-stimulatory factors or cytokines
Modeling and analysis of air campaign resource allocation: a spatio-temporal decomposition approach
Abstract—In this paper, we address the modeling and analysis issues associated with a generic theater level campaign where two adversaries pit their military resources against each other over a sequence of multiple engagements. In particular, we consider the scenario of an air raid campaign where one adversary uses suppression of enemy air defense (SEAD) aircraft and bombers (BMBs) against the other adversary’s invading ground troops (GTs) that are defended by their mobile air defense (AD) units. The original problem is decomposed into a temporal and a spatial resource allocation problem. The temporal resource allocation problem is formulated and solved in a game-theoretical framework as a multiple resource interaction problem with linear attrition functions. The spatial resource allocation problem is posed as a risk minimization problem in which the optimal corridor of ingress and optimal movement of the GTs and AD units are decided by the adversaries. These two solutions are integrated using an aggregation/deaggregation approach to evaluate resource strengths and distribute losses. Several simulation experiments were carried out to demonstrate the main ideas. Index Terms—Air campaign modeling, applied game theory, military campaigns, resource allocation, resource interaction models. I
Recommended from our members
The Relative Importance of Different Trophic Pathways for Secondary Exposure to Anticoagulant Rodenticides
Secondary exposure of predators to anticoagulant rodenticides, and in particular second generation anticoagulant rodenticides (SGARs), is a global phenomenon. The widespread and large-scale nature of this exposure has attracted considerable concern, although the consequences in terms of likelihood of poisoning of individuals and resultant impacts on populations are not well characterised. Secondary exposure of predators may as rise from once or more of: (i) eating contaminated commensal rodents subject to control (target species are typically rats and house mice); (ii) consumption of contaminated non-target small mammals (such as Peromyscus, Microtus, and Apodemus species) that encounter and feed on what are rodent-attractive baits; (iii) consumption of non-rodent vertebrate and invertebrate prey that may also incidentally encounter and eat baits. We hypothesised that predators feeding primarily on target species may be most at risk of exposure to SGARs while those predominantly taking non-mammalian prey may be at least risk. We tested this hypothesis by comparing exposure, determined from the presence and magnitude of SGAR liver residues, in red kites (Milvus milvus), which feeds extensively on rats, in barn owls (Tyto alba), kestrels (Falco tinnunculus), and tawny owls (Strix aluco) that feed widely on non-target small mammals, and in sparrowhawks (Accipiter nisus) that feed predominantly on small birds. We found that the scale and magnitude of exposure was broadly consistent with our hypothesis, and that controlling for age in the analysis could be important as older birds can accumulate residues with age. However, exposure in kestrels was typically greater than that in barn owls and tawny owls, despite what is thought to be a general similarity among the species in their diets. We discuss the relative importance of trophic pathways relative to other factors that may drive secondary exposure in predators, and confirm that species that feed on rats or other target species may be at most risk of exposure and poisoning
Graph neural networks in vision-language image understanding: a survey
Abstract2D image understanding is a complex problem within computer vision, but it holds the key to providing human-level scene comprehension. It goes further than identifying the objects in an image, and instead, it attempts to understand the scene. Solutions to this problem form the underpinning of a range of tasks, including image captioning, visual question answering (VQA), and image retrieval. Graphs provide a natural way to represent the relational arrangement between objects in an image, and thus, in recent years graph neural networks (GNNs) have become a standard component of many 2D image understanding pipelines, becoming a core architectural component, especially in the VQA group of tasks. In this survey, we review this rapidly evolving field and we provide a taxonomy of graph types used in 2D image understanding approaches, a comprehensive list of the GNN models used in this domain, and a roadmap of future potential developments. To the best of our knowledge, this is the first comprehensive survey that covers image captioning, visual question answering, and image retrieval techniques that focus on using GNNs as the main part of their architecture. </jats:p
The domain of organizational cognitive neuroscience:theoretical and empirical challenges
In this editorial, the authors respond to the 2011 article in the Journal of Management by Becker, Cropanzano, and Sanfey, titled “Organizational Neuroscience: Taking Organizational Theory Inside the Neural Black Box.” More specifically, the authors build on the ideas of Becker et al. first to clarify and extend their work and then to explore the critical philosophical issues involved in drawing inferences from neuroscientific research. They argue that these problems are yet to be solved and that organizational researchers who wish to incorporate neuroscientific advances into their work need to engage with them
- …