2,587 research outputs found

    Energy-transfer rate in a double-quantum-well system due to Coulomb coupling

    Full text link
    We study the energy-transfer rate for electrons in a double-quantum-well structure, where the layers are coupled through screened Coulomb interactions. The energy-transfer rate between the layers (similar to the Coulomb drag effect in which the momentum transfer rate is considered) is calculated as functions of electron densities, interlayer spacing, the temperature difference of the 2DEGs, and the electron drift velocity in the drive layer. We employ the full wave vector and frequency dependent random-phase approximation at finite temperature to describe the effective interlayer Coulomb interaction. We find that the collective modes (plasmons) of the system play a dominant role in the energy transfer rates. The contribution of optical phonons to the transfer rates through the phonon mediated Coulomb coupling mechanism has also been considered.Comment: LaTex, 5 pages, 4 figures, uses grafik.sty (included

    Quantum Transport Characteristics of Lateral pn-Junction of Single Layer TiS3

    Full text link
    Using density functional theory and nonequilibrium Greens functions-based methods we investigated the electronic and transport properties of monolayer TiS3 pn-junction. We constructed a lateral pn-junction in monolayer TiS3 by using Li and F adatoms. An applied bias voltage caused significant variability in the electronic and transport properties of the TiS3 pn-junction. In addition, spin dependent current-voltage characteristics of the constructed TiS3 pn-junction were analyzed. Important device characteristics were found such as negative differential resistance and rectifying diode behaviors for spin-polarized currents in the TiS3 pn-junction. These prominent conduction properties of TiS3 pn-junction offer remarkable opportunities for the design of nanoelectronic devices based on a recently synthesized single-layered material

    Optimal Threshold-Based Multi-Trial Error/Erasure Decoding with the Guruswami-Sudan Algorithm

    Full text link
    Traditionally, multi-trial error/erasure decoding of Reed-Solomon (RS) codes is based on Bounded Minimum Distance (BMD) decoders with an erasure option. Such decoders have error/erasure tradeoff factor L=2, which means that an error is twice as expensive as an erasure in terms of the code's minimum distance. The Guruswami-Sudan (GS) list decoder can be considered as state of the art in algebraic decoding of RS codes. Besides an erasure option, it allows to adjust L to values in the range 1<L<=2. Based on previous work, we provide formulae which allow to optimally (in terms of residual codeword error probability) exploit the erasure option of decoders with arbitrary L, if the decoder can be used z>=1 times. We show that BMD decoders with z_BMD decoding trials can result in lower residual codeword error probability than GS decoders with z_GS trials, if z_BMD is only slightly larger than z_GS. This is of practical interest since BMD decoders generally have lower computational complexity than GS decoders.Comment: Accepted for the 2011 IEEE International Symposium on Information Theory, St. Petersburg, Russia, July 31 - August 05, 2011. 5 pages, 2 figure

    Optimal Thresholds for GMD Decoding with (L+1)/L-extended Bounded Distance Decoders

    Full text link
    We investigate threshold-based multi-trial decoding of concatenated codes with an inner Maximum-Likelihood decoder and an outer error/erasure (L+1)/L-extended Bounded Distance decoder, i.e. a decoder which corrects e errors and t erasures if e(L+1)/L + t <= d - 1, where d is the minimum distance of the outer code and L is a positive integer. This is a generalization of Forney's GMD decoding, which was considered only for L = 1, i.e. outer Bounded Minimum Distance decoding. One important example for (L+1)/L-extended Bounded Distance decoders is decoding of L-Interleaved Reed-Solomon codes. Our main contribution is a threshold location formula, which allows to optimally erase unreliable inner decoding results, for a given number of decoding trials and parameter L. Thereby, the term optimal means that the residual codeword error probability of the concatenated code is minimized. We give an estimation of this probability for any number of decoding trials.Comment: Accepted for the 2010 IEEE International Symposium on Information Theory, Austin, TX, USA, June 13 - 18, 2010. 5 pages, 2 figure

    Ag and Au Atoms Intercalated in Bilayer Heterostructures of Transition Metal Dichalcogenides and Graphene

    Full text link
    The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures.Comment: accepted, APL Ma

    Chiral single-wall gold nanotubes

    Get PDF
    Based on first-principles calculations we show that gold atoms can form both free-standing and tip-suspended chiral single-wall nanotubes composed of helical atomic strands. Free-standing, infinite (5,5) tube is found to be energetically the most favorable. While energetically less favorable, the experimentally observed (5,3) tube stretching between two tips corresponds to a local minimum in the string tension. Similarly, the (4,3) tube is predicted as a favorable structure yet to be observed experimentally. Analysis of band structure, charge density, and quantum ballistic conductance suggests that the current on these wires is less chiral than expected, and there is no direct correlation between the numbers of conduction channels and helical strands.Comment: Figures provided in eps forma

    Development of GCP Ontology for sharing crop information

    Get PDF
    Poster presented at 3rd International Biocuration Conference. Berlin (Germany), 17 Apr 200

    hh-AlN-Mg(OH)2_{2} vdW Bilayer Heterostructure: Tuning the excitonic characteristics

    Get PDF
    Motivated by recent studies that reported the successful synthesis of monolayer Mg(OH)2_{2} [Suslu \textit{et al.}, Sci. Rep. \textbf{6}, 20525 (2016)] and hexagonal (\textit{h}-)AlN [Tsipas \textit{et al}., Appl. Phys. Lett. \textbf{103}, 251605 (2013)], we investigate structural, electronic, and optical properties of vertically stacked hh-AlN and Mg(OH)2_{2}, through \textit{ab initio} density-functional theory (DFT), many-body quasi-particle calculations within the GW approximation, and the Bethe-Salpeter equation (BSE). It is obtained that the bilayer heterostructure prefers the ABAB^{\prime} stacking having direct band gap at the Γ\Gamma with Type-II band alignment in which the valance band maximum and conduction band minimum originate from different layer. Regarding the optical properties, the imaginary part of the dielectric function of the individual layers and hetero-bilayer are investigated. The hetero-bilayer possesses excitonic peaks which appear only after the construction of the hetero-bilayer. The lowest three exciton peaks are detailedly analyzed by means of band decomposed charge density and the oscillator strength. Furthermore, the wave function calculation shows that the first peak of the hetero-bilayer originates from spatially indirect exciton where the electron and hole localized at hh-AlN and Mg(OH)2_{2}, respectively, which is important for the light harvesting applications.Comment: Accepted by Physical Review

    Directed Growth of Hydrogen Lines on Graphene: High Throughput Simulations Powered by Evolutionary Algorithm

    Get PDF
    We set up an evolutionary algorithm combined with density functional tight-binding (DFTB) calculations to investigate hydrogen adsorption on flat graphene and graphene monolayers curved over substrate steps. During the evolution, candidates for the new generations are created by adsorption of an additional hydrogen atom to the stable configurations of the previous generation, where a mutation mechanism is also incorporated. Afterwards a two-stage selection procedure is employed. Selected candidates act as the parents of the next generation. In curved graphene, the evolution follows a similar path except for a new mechanism, which aligns hydrogen atoms on the line of minimum curvature. The mechanism is due to the increased chemical reactivity of graphene along the minimum radius of curvature line (MRCL) and to sp3^3 bond angles being commensurate with the kinked geometry of hydrogenated graphene at the substrate edge. As a result, the reaction barrier is reduced considerably along the MRCL, and hydrogenation continues like a mechanical chain reaction. This growth mechanism enables lines of hydrogen atoms along the MRCL, which has the potential to overcome substrate or rippling effects and could make it possible to define edges or nanoribbons without actually cutting the material.Comment: 10 pages of main text, 37 pages of supplementary information, 1 supplementary vide
    corecore