207 research outputs found

    Size-resolved evaluation of simulated deep tropical convection

    Get PDF
    Deep moist convection is an inherently multiscale phenomenon with organization processes coupling convective elements to larger-scale structures. A realistic representation of the tropical dynamics demands a simulation framework that is capable of representing physical processes across a wide range of scales. Therefore, storm-resolving numerical simulations at 2.4 km have been performed covering the tropical Atlantic and neighboring parts for 2 months. The simulated cloud fields are combined with infrared geostationary satellite observations, and their realism is assessed with the help of object-based evaluation methods. It is shown that the simulations are able to develop a well-defined intertropical convergence zone. However, marine convective activity measured by the cold cloud coverage is considerably underestimated, especially for the winter season and the western Atlantic. The spatial coupling across the resolved scales leads to simulated cloud number size distributions that follow power laws similar to the observations, with slopes steeper in winter than summer and slopes steeper over ocean than over land. The simulated slopes are, however, too steep, indicating too many small and too few large tropical cloud cells. It is also discussed that the number of larger cells is less influenced by multiday variability of environmental conditions. Despite the identified deficits, the analyzed simulations highlight the great potential of this modeling framework for process-based studies of tropical deep convection. © 2018 American Meteorological Society

    Gravity waves, scale asymptotics, and the pseudo-incompressible equations

    Get PDF
    Multiple-scale asymptotics is used to analyze the Euler equations for the dynamical situation of a gravity wave (GW) near breaking level. A simple saturation argument in combination with linear theory is used to obtain the relevant dynamical scales. As small expansion parameter the ratio of inverse of the vertical wave number and potentialtemperature and pressure scale heights is used, which we allow to be of the same order of magnitude here. It is shown that the resulting equation hierarchy is consistent with that obtained from the pseudo-incompressible equations, both for non-hydrostatic and hydrostatic gravity waves, while this is not the case for the anelastic equations unless the additional assumption of sufficiently weak stratication is adopted. To describe vertical propagation of wave packets over several atmospheric scale heights, WKB theory is used to show that the pseudo-incompressible flow divergence generates the same amplitude equation that also obtains from the full Euler equations. This gives a mathematical justication for the use of the pseudo-incompressible equations for studies of gravity-wave breaking in the atmosphere for arbitrary background stratication. The WKB theory interestingly also holds at wave amplitudes close to static instability. In the mean-flow equations we obtain in addition to the classic wave-induced momentum-flux divergences a wave-induced correction of hydrostatic balance in the vertical-momentum equation which cannot be obtained from Boussinesq or anelastic dynamics

    The interaction between synoptic-scale balanced flow and a finite-amplitude mesoscale wave field throughout all atmospheric layers: weak and moderately strong stratification

    Get PDF
    The interaction between locally monochromatic finite-amplitude mesoscale waves, their nonlinearly induced higher harmonics, and a synoptic-scale flow is reconsidered, both in the tropospheric regime of weak stratification and in the stratospheric regime of moderately strong stratification. A review of the basic assumptions of quasi-geostrophic theory on an f-plane yields all synoptic scales in terms of a minimal number of natural variables, i.e. two out of the speed of sound, gravitational acceleration and Coriolis parameter. The wave scaling is defined so that all spatial and temporal scales are shorter by one order in the Rossby number, and by assuming their buoyancy field to be close to static instability. WKB theory is applied, with the Rossby number as scale separation parameter, combined with a systematic Rossby-number expansion of all fields. Classic results for synoptic-scale-flow balances and inertia-gravity-wave (IGW) dynamics are recovered. These are supplemented by explicit expressions for the interaction between mesoscale geostrophic modes (GMs), a possibly somewhat overlooked agent of horizontal coupling in the atmosphere, and the synoptic-scale flow. It is shown that IGW higher harmonics are slaved to the basic IGW, and that their amplitude is one order of magnitude smaller than the basic-wave amplitude. GM higher harmonics are not that weak and they are in intense nonlinear interaction between themselves and the basic GM. Compressible dynamics plays a significant role in the stratospheric stratification regime, where anelastic theory would yield insufficient results. Supplementing classic derivations, it is moreover shown that, in the absence of mesoscale waves, quasi-geostrophic theory holds also in the stratospheric stratification regime

    A Synthetic Glycan Microarray Enables Epitope Mapping of Plant Cell Wall Glycan-Directed Antibodies

    Get PDF
    In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories worldwide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types, and developmental stages. Despite their importance and broad use, the precise binding epitope has been determined for only a few of these antibodies. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies. Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall analyses, providing a framework to obtain structural information on plant cell wall glycans with unprecedented molecular precision

    The at wavelength metrology facility for UV and XUV reflection and diffraction optics at BESSY II

    Get PDF
    A technology center for the production of high precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at wavelength characterization of UV and XUV reflection gratings and other nano optical elements has been set up at BESSY II. The Plane Grating Monochromator beamline operated in collimated light c PGM is equipped with an SX700 monochromator, of which the blazed gratings 600 and 1200 lines mm 1 have been recently exchanged for new ones of improved performance produced in house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by i a four mirror arrangement of different coatings which can be inserted into the beam at different angles and ii by absorber filters for high order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in and off plane bending magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11 axes reflectometer is the possibility to incorporate real life sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90 deg incidence angle for both s and p polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented her

    Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia

    Get PDF
    BACKGROUND: Evidence from cachectic cancer patients and animal models of cancer cachexia supports the involvement of Forkhead box O (FoxO) transcription factors in driving cancer-induced skeletal muscle wasting. However, the genome-wide gene networks and associated biological processes regulated by FoxO during cancer cachexia are unknown. We hypothesize that FoxO is a central upstream regulator of diverse gene networks in skeletal muscle during cancer that may act coordinately to promote the wasting phenotype. METHODS: To inhibit endogenous FoxO DNA-binding, we transduced limb and diaphragm muscles of mice with AAV9 containing the cDNA for a dominant negative (d.n.) FoxO protein (or GFP control). The d.n.FoxO construct consists of only the FoxO3a DNA-binding domain that is highly homologous to that of FoxO1 and FoxO4, and which outcompetes and blocks endogenous FoxO DNA binding. Mice were subsequently inoculated with Colon-26 (C26) cells and muscles harvested 26 days later. RESULTS: Blocking FoxO prevented C26-induced muscle fiber atrophy of both locomotor muscles and the diaphragm and significantly spared force deficits. This sparing of muscle size and function was associated with the differential regulation of 543 transcripts (out of 2,093) which changed in response to C26. Bioinformatics analysis of upregulated gene transcripts that required FoxO revealed enrichment of the proteasome, AP-1 and IL-6 pathways, and included several atrophy-related transcription factors, including Stat3, Fos, and Cebpb. FoxO was also necessary for the cancer-induced downregulation of several gene transcripts that were enriched for extracellular matrix and sarcomere protein-encoding genes. We validated these findings in limb muscles and the diaphragm through qRT-PCR, and further demonstrate that FoxO1 and/or FoxO3a are sufficient to increase Stat3, Fos, Cebpb, and the C/EBPÎČ target gene, Ubr2. Analysis of the Cebpb proximal promoter revealed two bona fide FoxO binding elements, which we further establish are necessary for Cebpb promoter activation in response to IL-6, a predominant cytokine in the C26 cancer model. CONCLUSIONS: These findings provide new evidence that FoxO-dependent transcription is a central node controlling diverse gene networks in skeletal muscle during cancer cachexia, and identifies novel candidate genes and networks for further investigation as causative factors in cancer-induced wasting.R01 AR060217 - NIAMS NIH HHS; R01 AR060209 - NIAMS NIH HHS; T32 HD043730 - NICHD NIH HHS; R00 HL098453 - NHLBI NIH HHS; R00HL098453 - NHLBI NIH HHS; R01AR060209 - NIAMS NIH HHS; R01AR060217 - NIAMS NIH HH
    • 

    corecore