955 research outputs found

    Comparison of cone-beam computed tomography and panoramic radiography for mandibular morphometry

    Get PDF
    Background: The aim of this study was to compare the morphological differences in the mandible between patients with six age groups and to detect the correlation between these parameters on panoramic radiography (PR) and cone-beam computed tomography (CBCT). Materials and methods: A total of 121 subjects (50 males and 71 females) were included in the study and were divided into six age groups (10–19, 20–29, 30–39, 40–49, 50–59, and 60–69) on the basis of the chronological age. CBCT and PR methods were used to record the mandibular measurements for the same 121 patients. Differences between male and female mandibular morphometric measurements, between right and left side measurements, and differences in age subgroups compared by using independent samples t-test, paired samples t-test, and one-way ANOVA test, respectively. P < 0.05 value was considered statistically significant for all analysis. Results: Males mostly have higher mandibular measurement values. There were statistically significant differences between CBCT and PR measurements (p < 0.05). PR mostly showed higher values than CBCT measurements. Conclusions: Based on the fact that PRs showing significant differences from CBCT in the morphometric measurements made on mandible, it is recommended that forensic doctors and anthropologists consider this information in their age and gender prediction studies

    Milk Lactose Hydrolysis In A Batch Reactor: Optimisation Of Process Parameters, Kinetics Of Hydrolysis And Enzyme Inactivation

    Get PDF
    The present investigation describes the effects of the process quantities on enzymatic hydrolysis of milk lactose and enzyme stability. The lactose hydrolysis reactions were carried out in 250 mL of milk by using a commercial β-galactosidase produced from Kluyveromyces marxianus lactis. The residual lactose mass concentration (g L-1) and residual enzyme activity (%) against time were investigated vs. process variables such as temperature, impeller speed and enzyme concentration. Optimum conditions for hydrolysis were obtained as 37 °C, 300 rpm, 1 mL L-1 enzyme concentration and 30 min of processing time. The lactose hydrolysis process resulted in 84 % of hydrolysis degree and 52 % of residual enzyme activity at the optimum experimental conditions obtained. After evaluation of the data, it was found that the kinetics of hydrolysis and enzyme inactivation could be represented by a first order kinetic model and a single-step non-first-order enzyme inactivation kinetic model for all process conditions applied. Also, to illustrate the effect of process variables on hydrolysis and enzyme stability, some modelling studies were performed. The activation energy for hydrolysis reaction (EA) was calculated as 50.685 kJ mol-1

    Phytochemical and antioxidant characteristics of medlar fruits (Mespilus germanica L.)

    Get PDF
    Eleven medlar (Mespilus germanica L.) genotypes sampled from Turkey were analyzed for their fruit weight, fruit dimensions, fruit firmness, ostiole diameter, shape index, skin color, moisture (%), ash (%), reducing sugar (%), crude protein (%), pH, soluble solid content (%), vitamin C (mg/100 g), minerals (P, K, Ca, Mg, Fe, Zn, Mn), total phenolic content and total antioxidant capacity. A wide variation among genotypes on most of the searched parameters was evident. Fruit weight varied from 11.21 g to 33.24 g indicating high variability among genotypes. Determination of antioxidant activities by β-carotene–linoleic acid and 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assays resulted in average 80.8%, and 46.6 μg/ml FW DPPH, respectively. The total phenolic contents of eleven medlar genotypes varied from 114 to 293 mg gallic acid equivalent in 100 g fresh weight basis. The medlar fruits were found to be rich in terms of potassium, calcium, phosphorus, magnesium and iron

    Determinants of the selective toxicity of alloxan to the pancreatic B cell.

    Full text link

    Pavement Thickness Evaluation by GPR Survey in Idaho

    Get PDF
    In 1995 and 1996, the Idaho Transportation Department (lTD) conducted a series of ground-penetrating radar (GPR) surveys as a nondestructive testing (NDT) method to evaluate the thickness of asphalt and Portland cement concrete (AC/PCC) pavements in Idaho. GPR surveys employed both air-coupled and combination air and ground coupled systems with their associated equipment and software. A total of 30 miles of AC/PCC pavements were evaluated by GPR surveys. The results obtained were correlated with the site-specific ground-truth data from borings. Knowledge of pavement layer thickness is needed to predict pavement performance, establish load carrying capacities and develop maintenance and rehabilitation priorities. In addition, for new construction, it is important to ensure that the thickness of materials being placed by the contractor is acceptably close to specification. Core sampling and test pits are destructive to the pavement system, expensive, time consuming and intrusive to traffic. The objective of the lTD study was to evaluate, compare and assess the ability of these two GPR systems to accurately measure the thickness of multiple pavement layers, and document the data nondestructively. This paper reviews the findings of these surveys and provides statistically based data for both AC and PCC pavements. The overall study has shown that reasonably accurate, dependable determination of pavement thickness can be achieved by using GPR survey for conditions encountered in Idaho

    A Random Matrix Model for Color Superconductivity at Zero Chemical Potential

    Get PDF
    We discuss random matrix models for the spontaneous breaking of both chiral and color symmetries at zero chemical potential and finite temperature. Exploring different Lorentz and gauge symmetric color structures of the random matrix interactions, we find that spontaneous chiral symmetry breaking is always thermodynamically preferred over diquark condensation. Stable diquark condensates appear only as SU(2) rotated chiral condensates, which do not represent an independent thermodynamic phase. Our analysis is based on general symmetry arguments and hence suggests that no stable and independent diquark phase can form in QCD with two flavors at zero quark chemical potential.Comment: 26 pages, 1 figure, uses ReVTeX and epsf.st

    Universality for orthogonal and symplectic Laguerre-type ensembles

    Full text link
    We give a proof of the Universality Conjecture for orthogonal (beta=1) and symplectic (beta=4) random matrix ensembles of Laguerre-type in the bulk of the spectrum as well as at the hard and soft spectral edges. Our results are stated precisely in the Introduction (Theorems 1.1, 1.4, 1.6 and Corollaries 1.2, 1.5, 1.7). They concern the appropriately rescaled kernels K_{n,beta}, correlation and cluster functions, gap probabilities and the distributions of the largest and smallest eigenvalues. Corresponding results for unitary (beta=2) Laguerre-type ensembles have been proved by the fourth author in [23]. The varying weight case at the hard spectral edge was analyzed in [13] for beta=2: In this paper we do not consider varying weights. Our proof follows closely the work of the first two authors who showed in [7], [8] analogous results for Hermite-type ensembles. As in [7], [8] we use the version of the orthogonal polynomial method presented in [25], [22] to analyze the local eigenvalue statistics. The necessary asymptotic information on the Laguerre-type orthogonal polynomials is taken from [23].Comment: 75 page

    Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides

    Get PDF
    Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll–protein complexes responsible for light absorption, photochemistry and quinol (QH2) production has been mapped in the purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides using atomic force microscopy (AFM), but the membrane location of the cytochrome bc1 (cytbc1) complexes that oxidise QH2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cytbc1 complexes with gold nanobeads, each attached by a Histidine10 (His10)-tag to the C-terminus of cytc1. Electron microscopy (EM) of negatively stained chromatophore vesicles showed that the majority of the cytbc1 complexes occur as dimers in the membrane. The cytbc1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC–LH1–PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cytbc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC–LH1–PufX complexes tended to co-purify with cytbc1 whereas LH2 complexes became detached, consistent with clusters of cytbc1 complexes close to RC–LH1–PufX arrays, but not with a fixed, stoichiometric cytbc1–RC–LH1–PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cytbc1, ATP synthase, cytaa3 and cytcbb3 membrane protein complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1–RC–PufX dimers & 2 RC–LH1–PufX monomers, 4 cytbc1 dimers and 2 ATP synthases. Simulation of the interconnected energy, electron and proton transfer processes showed a half-maximal ATP turnover rate for a light intensity equivalent to only 1% of bright sunlight. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities

    Hydrogen sulfide protects renal grafts against prolonged cold ischemia-reperfusion injury via specific mitochondrial actions

    Get PDF
    This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/ajt.14080 This article is protected by copyright. All rights reserved.Accepted manuscript online: 15 October 2016Ischemia-reperfusion injury (IRI) is unavoidably caused by loss and subsequent restoration of blood flow during organ procurement and prolonged IRI results in increased rates of delayed graft function and early graft loss. The endogenously produced gasotransmitter, hydrogen sulfide (H2 S), is a novel molecule that mitigates hypoxic tissue injury. The current study investigates the protective mitochondrial effects of H2 S during in vivo cold storage and subsequent renal transplantation (RTx) and in vitro cold hypoxic renal injury. Donor allografts from Brown Norway rats treated with University of Wisconsin (UW) solution + H2 S (150 μM NaSH) during prolonged (24-hour) cold (4°C) storage exhibited significantly (p1000-fold compared to similar levels of the non-specific H2 S donor, GYY4137 and also improved syngraft function and survival following prolonged cold storage compared to UW. H2 S treatment mitigates cold IRI-associated renal injury via mitochondrial actions and could represent a novel therapeutic strategy to minimize the detrimental clinical outcomes of prolonged cold IRI during RTx.This work was supported by grants from Physicians Services Incorporated and the Canadian Urological Association (AS) and by a Frederick Banting and Charles Best Canada Graduate Scholarships Doctoral Award from the Canadian Institutes of Health Research (IL). MW and MEW would like to thank the Medical Research Council UK (MR/M022706/1) for their generous research support. RT would like to acknowledge the Brian Ridge Scholarship for support

    Distribution of entanglement in light-harvesting complexes and their quantum efficiency

    Full text link
    Recent evidence of electronic coherence during energy transfer in photosynthetic antenna complexes has reinvigorated the discussion of whether coherence and/or entanglement has any practical functionality for these molecular systems. Here we investigate quantitative relationships between the quantum yield of a light-harvesting complex and the distribution of entanglement among its components. Our study focusses on the entanglement yield or average entanglement surviving a time scale comparable to the average excitation trapping time. As a prototype system we consider the Fenna-Matthews-Olson (FMO) protein of green sulphur bacteria and show that there is an inverse relationship between the quantum efficiency and the average entanglement between distant donor sites. Our results suggest that longlasting electronic coherence among distant donors might help modulation of the lightharvesting function.Comment: Version accepted for publication in NJ
    • …
    corecore