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Abbreviations:  3-mercaptopyruvate sulfurtransferase (3-MST); Apoptosis inducing factor 
(Apaf); Acute tubular necrosis (ATN); Blood urea nitrogen (BUN); 
Cystathionine-beta synthase (CBS); Carbon monoxide (CO); 
Cystathionine-gamma lyase (CSE); Dihydrorhodamine 123 (DHR-123); 
Dulbecco’s modified eagle medium (DMEM); Electron transport chain 
(ETC); Ethidium homodimer 1 (EthD-1); Fetal bovine serum (FBS); 
Hematoxylin and eosin (H&E); Hypoxia/hypercapnia and re-oxygenation 
(H/R); Hydrogen sulfide (H2S); Hypoxia-inducible factor 1 (HIF-1); 
Ischemia-reperfusion injury (IRI); Mitochondrial permeability transition 
pore (MPTP); Nitric oxide (NO); Phosphate-buffered saline (PBS); Post-
operative day (POD); Reactive oxygen species (ROS); Renal 
transplantation (RTx); Sulfide:quinone oxidoreductase (SQR); Tri-phenyl 
phosphonium cation (TPP+); Terminal deoxynucleotidyl transferase dUTP 
nick end labelling (TUNEL); University of Wisconsin solution (UW). 

Abstract 

Ischemia-reperfusion injury (IRI) is unavoidably caused by loss and subsequent restoration of 

blood flow during organ procurement and prolonged IRI results in increased rates of delayed 

graft function and early graft loss. The endogenously produced gasotransmitter, hydrogen sulfide 

(H2S), is a novel molecule that mitigates hypoxic tissue injury. The current study investigates the 

protective mitochondrial effects of H2S during in vivo cold storage and subsequent renal 

transplantation (RTx) and in vitro cold hypoxic renal injury. Donor allografts from Brown 

Norway rats treated with University of Wisconsin (UW) solution + H2S (150 µM NaSH) during 

prolonged (24-hour) cold (4ºC) storage exhibited significantly (p<0.05) decreased acute 

necrotic/apoptotic injury and significantly (p<0.05) improved function and recipient Lewis rat 

survival compared to UW solution alone. Treatment of rat kidney epithelial cells (NRK-52E) 

with the mitochondrial-targeted H2S donor, AP39, during in vitro cold hypoxic injury improved 

the protective capacity of H2S >1000-fold compared to similar levels of the non-specific H2S 

donor, GYY4137 and also improved syngraft function and survival following prolonged cold 

storage compared to UW. H2S treatment mitigates cold IRI-associated renal injury via 
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mitochondrial actions and could represent a novel therapeutic strategy to minimize the 

detrimental clinical outcomes of prolonged cold IRI during RTx. 

Introduction 

Organ procurement is inherently associated with ischemia-reperfusion injury (IRI), resulting 

from loss and subsequent restoration of blood flow, which leads to increased rates of delayed 

graft function, acute graft rejection and early graft loss (1,2). Current methods of limiting IRI 

during renal transplantation involve cold storage of kidneys in preservation solution during the 

peri-transplant period (3). However, these strategies have been maximized and prolonged periods 

(>24 hours) of cold IRI are still associated with increased rates of acute tubular necrosis (ATN), 

delayed graft function and decreased graft survival (4-9). There are many pathophysiological 

components of IRI, including reactive oxygen species (ROS) production, inflammation and 

induction of cellular apoptotic pathways, and it has been well established that mitochondrial 

damage and subsequent dysfunction is a key mediator of these injurious pathways (10). During 

ischemia, ATP depletion causes inhibition of mitochondrial Na+/K+ ion channels, resulting in 

increased mitochondrial inner membrane permeability, influx of Ca2+ ions and subsequent 

swelling of mitochondria. In addition, prolonged periods of ischemia can permanently damage 

complexes in the electron transport chain (ETC), which are then prone to electron leak and 

produce a burst of ROS as oxygen floods cells upon reperfusion. High levels of mitochondrial 

ROS production combined with Ca2+-induced mitochondrial swelling result in severe damage of 

mitochondrial membranes and formation of mitochondrial permeability transition pores (MPTP), 

releasing pro-apoptotic factors, cytochrome c and apoptosis inducing factor (Apaf), which then 

activate the caspase 9/3 apoptotic signaling cascade, initiating cellular apoptosis (11).  
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Treatment of donor kidneys with gasotransmitters has recently been identified as a potential 

therapeutic strategy to limit IRI during renal transplantation (12). Gasotransmitters are 

endogenously produced gaseous molecules that share similar physical and chemical 

characteristics. This family of molecules currently includes nitric oxide (NO), carbon monoxide 

(CO) and the most recently characterized member, hydrogen sulfide (H2S) (13). Hydrogen 

sulfide is an endogenously produced gaseous molecule derived from cysteine by the actions of 

three major cellular enzymes, cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 

3-mercaptopyruvate sulfurtransferase (3-MST) (14). In addition to playing important 

physiological roles in cellular signaling and vasodilation (15,16), H2S has been found to exhibit 

anti-oxidant, anti-inflammatory and anti-apoptotic effects that protect kidneys during warm 

ischemic injury (17-20). Addition of H2S to organ preservation solution during cold organ 

storage is a promising therapeutic strategy to reduce graft injury associated with prolonged cold 

IRI.  

We have previously shown that treatment of renal grafts with H2S mitigates IRI-associated graft 

injury and improves early graft function and survival in murine models of syngeneic renal 

transplantation (RTx) following prolonged (24-hour) cold storage (21) and allogeneic RTx 

following moderate (6-hour) cold storage (22). Therefore, to determine whether H2S can mitigate 

IRI in the most unfavourable clinical circumstances, the current study investigates the protective 

effects of H2S in the context of allogeneic RTx following prolonged (24-hour) cold organ 

storage. In addition, it has recently been identified that H2S may exert protective effects by 

translocating to mitochondria during hypoxia/ischemia, where it prevents oxidative damage and 

preserves mitochondrial membrane integrity (23-25). Accordingly, the current study also aims to 
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characterize renoprotective effects of H2S specific to mitochondria during in vitro hypoxic injury 

and in vivo cold IRI. 

 

Materials and Methods 

Experimental animals 

Male Brown Norway (n=56) and Lewis rats (n=52) were purchased from Charles River Canada 

and used at 300 – 350 grams and maintained at Western University according to standard 

conditions. Animal studies received ethics approval from the Western University Council for 

Animal Care.  

Allogeneic renal transplant surgical procedure and post-operative monitoring of rats 

Allogeneic renal transplantation was performed using left kidneys from Brown Norway rat 

donors and Lewis rat recipients, a model which elicits a robust recipient immune response 

against donor tissue. Rats were randomized into treatment groups, anaesthetized with ketamine 

(30 mg/kg) and maintained under anaesthesia with 1% isoflurane during surgery. Using aseptic 

techniques, donor kidneys were procured and flushed using a 28G angiocath with 1 mL of either 

cold (4 °C) University of Wisconsin (UW) preservation solution (UW group, n=8) or cold UW 

plus H2S donor molecule (150 µM NaSH (Sigma-Aldrich®); H2S group, n=8) until venous 

effluent was clear. Grafts were subsequently placed in 50 mL of the same perfusion solution and 

stored at 4 °C for 24 hours, which represents an extreme period of clinical cold storage time. 

Following bilateral nephrectomy, recipient rats underwent renal transplantation (RTx) with 

donor kidneys removed from cold storage and transplanted orthotopically into the left renal fossa 

using 10-0 prolene suture as previously described (26). Lewis sham operated rats (midline 
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incision only; n=5) were also followed to establish a baseline for survival, serum creatinine and 

histological analysis. After RTx, rats were monitored for a period of 14 days or until sacrifice to 

assess survival ratios and serum creatinine levels (determined using the enzymatic method 

performed on the Roche Modular P instrument). An additional subset of animals in the H2S 

group had allografts removed pre-emptively at post-operative day (POD) 2 (n=5) for comparison 

of histological analysis to UW animals that were sacrificed at this time point. Additionally, donor 

kidneys in each treatment group (n=8 per group) were obtained following cold storage, but prior 

to transplantation, to assess the protective effects of H2S immediately following cold storage. 

Donor kidneys obtained prior to cold storage were used as a baseline for this analysis (Pre-

storage group; n=8). Following 24-hour cold storage, donor kidneys were perfused with 10 mL 

of 5 µM Ethidium Homodimer (EthD-1) at a rate of 1 mL/min and subsequently washed by 

perfusion with 5 mL phosphate-buffered saline (PBS) at a rate of 1mL/min. EthD-1 fluoresces 

once bound to double-stranded DNA and is a marker of cellular necrosis as it can only enter cells 

if the plasma membrane is compromised. In each arm of the study, renal grafts obtained at time 

of sacrifice were sagitally bi-valved and placed in formalin for histological analysis. All 

surgeries were performed by the same micro-surgeon and the length of surgery for the recipient 

was approximately 2-3 hours for both treatment groups. There was no difference in operative 

times between treatment groups. Renal failure was presumed in animals that required premature 

sacrifice (>20% weight loss and/or under severe visible distress) while exhibiting highly elevated 

serum creatinine levels (>300 µmol/L). At time of sacrifice surgical complications were ruled 

out by visual observation as a cause of death.  
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Histological staining 

Histological sections were stained with hematoxylin and eosin (H&E) and were assessed for the 

presence of necrotic tubules that exhibit loss of nuclei and necrotic casts with a background of 

congestion, then assigned a score for ATN by a blinded transplant pathologist (ATN scores out 

of 5; 0 = 0% graft ATN, 1 = <10% graft ATN, 2 = 11-25% graft ATN, 3 = 26-45% graft ATN, 4 

= 46-75% graft ATN, 5 = >75% graft ATN). To approximate acute allograft rejection, H&E 

sections were also assigned tubulitis (T), vasculitis (V) and mononuclear cell interstitial 

inflammation (I) scores according to the Banff 97 working classification of renal allograft 

pathology (27). Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay 

was used to assess the degree of apoptosis present in renal allograft sections. For EthD-1 

analysis, kidneys were sectioned, stained with the nuclear marker 4',6-diamidino-2-phenylindole 

(DAPI) and analyzed via fluorescent microscopy.  

 

Microscopic image analysis 

TUNEL and EthD-1 sections were analyzed using a Nikon Eclipse 90i digital light microscope 

and an Olympus IX83 Inverted Microscope, respectively. Five images were analyzed per section 

for TUNEL and EthD-1 analysis and total (+) staining per field of view was quantified by 

ImageJ software v 1.48 (National Institutes of Health, Bethesda, MD). Background was 

subtracted from images and the colour threshold (RGB) was adjusted uniformly to accentuate 

positively stained areas which were then measured digitally. 
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In vitro model of renal epithelial cell hypoxia/hypercapnia and re-oxygenation. 

Underlying mechanisms of protective effects of H2S during renal IRI were assessed using a 

novel in vitro model of cold hypoxia/hypercapnia and warm re-oxygenation (H/R) injury that 

mimics cellular conditions during in vivo cold IRI. Rat kidney epithelial cells (NRK-52E cell 

line; ATCC) were cultured in DMEM + 5% fetal bovine serum (FBS) and 1% 

Penicillin/Streptomycin at 37 ºC in room O2 and 5% CO2. During experimentation, control cells 

were cultured in identical conditions to pre-experimental cells. Experimental cells were treated 

with either PBS or PBS plus varying concentrations of the non-specific H2S donor, GYY4137, or 

the mitochondrial-targeted H2S donor, AP39, which were synthesised in-house as previously 

described (28,29). Cells were exposed to cold (12 ºC) hypoxia/hypercapnia (0.1% O2/15% CO2) 

for 24 hours, followed by replacement of experimental media with control media (no phenol red) 

and re-oxygenation in conditions identical to pre-experimental cells. We used 12 ºC for our 

hypothermic condition as this was the lowest temperature that could be technologically achieved 

while maintaining strict control of O2 levels. Cellular ROS production was assessed via staining 

of cells with 10 µM Dihydrorhodamine 123 (DHR-123; Molecular ProbesTM) following 15 min 

re-oxygenation and mitochondrial membrane permeability was assessed via staining of cells with 

5 µM JC-1 dye (Molecular ProbesTM) following 18 hours re-oxygenation. Following 24 hours re-

oxygenation, cellular viability was measured via Annexin-V and 7-AAD staining, which assess 

cellular apoptosis and necrosis, respectively. Cells were analyzed via flow cytometry using the 

Beckman-Coulter FC 500 flow cytometer. 
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In vivo model of prolonged cold organ storage and syngeneic renal transplantation. 

To assess protective effects of AP39 against renal graft IRI, Lewis rats underwent bilateral native 

nephrectomy and subsequent RTx with syngeneic donor kidneys flushed with either University 

of Wisconsin preservation solution (UW group; n=7) or UW + 200 nM AP39 (AP39 group; n=7) 

and stored for 24 hours at 4°C in the same solution. Sham surgeries (midline incision only; n=5) 

were also performed and animals were monitored for 14 days to assess graft function and 

survival. The concentration of AP39 selected for in vivo experimentation was the dose that 

demonstrated cytoprotection in vitro and was closest to 1000-fold less than the 150 µM NaSH 

used in the previous RTx experiment. Syngeneic RTx was utilized to eliminate confounding 

effects of graft rejection while assessing the novel therapeutic potential of AP39 in this injury 

model. 

 

Statistical Analysis 

Survival data were analyzed via Kaplan-Meier survival analysis, all other data were analyzed via 

ordinary one-way ANOVA and Tukey’s post-hoc test performed using the GraphPad Prism 

statistical software package, version 6.0. Statistical significance was accepted at the 95% 

confidence interval. All values represented in figures are mean or median with minimum and 

maximum values. 

Results 

Hydrogen sulfide treatment improves early allograft survival and function. 

Animals that received allografts treated with H2S during cold storage exhibited significantly 

improved survival (p<0.01) compared to those receiving UW treated allografts (Figure 1A). 
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While UW treated animals exhibited only 50% survival at POD 2 and 0% survival at POD 6, 

H2S treated animals exhibited 50% survival at POD 7 and still maintained ~10% survival by the 

end of the time course (POD 14) (Figure 1A). H2S treatment markedly improved allograft 

function during the early post-transplant period compared to UW treatment. Both treatment 

groups exhibited significantly increased serum creatinine levels (p<0.001) at POD 2 and POD 4 

compared to Sham (Figure 1B). However, while UW animals exhibited serum creatinine levels 

that only increased until POD 6 (0% survival) H2S treated animals exhibited serum creatinine 

levels that decreased toward baseline (Sham) until time of sacrifice (Figure 1B).  

Hydrogen sulfide mitigates donor kidney apoptosis and necrosis but not allograft rejection. 

Renal sections stained with TUNEL revealed that while UW treated allografts exhibited 

significantly elevated (p<0.05) levels of apoptosis compared to Sham at POD 2-4, apoptosis 

levels in H2S treated kidneys were not significantly different compared to Sham at the same time 

point (Figure 2). In addition, H&E staining showed that H2S treated allografts exhibited slightly 

decreased ATN scores at POD 2-4 compared to UW, which tended to increase as animals began 

to lose grafts (Figure 3A). To provide a more quantitative measure of whether H2S treatment 

prevents tubular necrosis associated with cold IRI, donor kidneys were analyzed via EthD-1 

staining immediately following cold storage. Donor kidneys treated with only UW solution 

during cold storage exhibited significantly increased levels of EthD-1 fluorescence (p<0.01) 

compared to pre-storage kidneys, while H2S treated kidneys exhibited significantly decreased 

EthD-1 fluorescence (p<0.05) compared to UW kidneys (Figure 4). This indicates that H2S 

treated kidneys accumulated fewer necrotic cells compared to UW treated kidneys during 

prolonged cold storage. To determine whether H2S improves allograft survival by altering the 

progression of graft rejection, renal sections were scored for acute rejection using components of 
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the Banff 97 working classification of renal allograft pathology. H2S treated allografts exhibited 

significantly increased (p<0.05) inflammation, tubulitis and vasculitis scores at POD 6-14 

compared to both UW and H2S kidneys at POD 2-4 (Figure 3B). Since scores >2 in these 

categories indicate acute allograft rejection, this observation suggests that UW treated animals 

lose grafts early in the time period due to renal failure, not rejection, and that H2S by itself does 

not modulate allograft rejection.  

Targeting of hydrogen sulfide to mitochondria increases potency of protective effects 1000-fold 

during in vitro cold renal H/R injury. 

NRK-52E cells treated with PBS during in vitro cold H/R injury exhibited significantly 

decreased cellular viability (p<0.05) compared to control (normoxic) cells. Treatment of cells 

with 200 nM and 400 nM AP39 during cold H/R injury significantly improved cellular viability 

(p<0.05) compared to PBS-treated cells, to levels similar to control cells. Cells treated with 100 

nM, 200 nM, 400 nM and 100 µM GYY 4137 during cold H/R injury exhibited cellular viability 

levels that were significantly decreased (p<0.05) compared to cells treated with 400 nM AP39 

and were not significantly different compared to PBS-treated cells (Figure 5B,C). Only cells 

treated with 400 uM GYY 4137 exhibited significantly improved cellular viability (p<0.05) 

compared to PBS-treated cells (Figure 5C). As well, cells treated with 400 nM AP39 during cold 

H/R injury exhibited significantly decreased (p<0.0001) levels of ROS production and 

significantly increased (p<0.0001) mitochondrial membrane potential compared to cells treated 

with either PBS, 400 nM GYY4137 or 400 µM GYY4137 treatments (Figures 6 and 7). 

Treatment of renal grafts with AP39 during cold storage improves graft function and survival 

following syngeneic RTx. 
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Animals that received renal grafts treated with AP39 during cold storage exhibited significantly 

improved survival (p<0.01) compared to UW treated animals. Whereas UW treated animals 

exhibited ~40% survival at POD 2 and ~15% survival from POD 5 to end of time course (POD 

14), AP39 treated animals exhibited 100% survival at POD 2 and retained ~70% survival by end 

of time course. AP39 treatment also improved graft function (Figure 8A). UW treated animals 

exhibited significantly increased serum creatinine (p<0.05) compared to Sham at POD 1-3 that 

increased until time of sacrifice, with only one UW animal recovering renal function by POD 14. 

Conversely, AP39 treated animals exhibited serum creatinine levels that were elevated, but not 

significantly different, compared to Sham at POD 1-3 (Figure 8B). Only two AP39 treated 

animals exhibited serum creatinine levels that increased until time of sacrifice, while the 

remainder reached baseline serum creatinine levels by POD 4-6 (Figure 8B).  

Discussion 

Evidence for the therapeutic potential of H2S in treating pathologies of most major organ systems 

is continually expanding (30). A number of prior studies have shown that H2S treatment 

effectively protects kidneys exposed to warm ischemic injury, however the effect of H2S during 

cold IRI has not been as well explored (17-20). Our findings show that treatment of donor 

kidneys with H2S during prolonged cold storage significantly improved resultant allograft 

function and survival compared to kidneys stored in UW solution alone. These functional data 

were also corroborated by histological findings. Staining of donor kidneys with EthD-1 

immediately following cold storage showed that H2S treatment significantly blunted the 

progression of tissue necrosis during prolonged cold storage compared to untreated kidneys. 

Allografts treated with H2S also showed markedly decreased levels of apoptosis acutely 

following RTx compared to UW treated allografts. These findings indicate that H2S limits renal 
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cellular injury associated with prolonged cold ischemia time, resulting in greater preservation of 

functioning renal parenchyma following cold storage and improved recovery of allograft 

function during the acute post-transplant period. Despite the early protective effects of H2S 

treatment in our model, only one H2S treated animal survived until end of time course. While our 

study utilizes a model of extreme graft injury to explore the maximal protective capacity of H2S-

based preservation, we have previously shown that H2S treatment is also protective during a 

more moderate period of 6h cold storage (22). Scoring of renal sections using criteria for acute 

rejection from the Banff 97 working classification of renal allograft pathology indicated that 

graft loss from POD 6-14 was likely due to acute rejection. This is not surprising as Brown 

Norway to Lewis RTx is known to illicit a robust acute rejection response in the absence of 

immune suppression (31). However, it is expected that combination of H2S treatment with 

immune suppressive therapy would result in significantly improved long-term allograft function 

and survival rates compared to untreated kidneys.  

Due to the relatively small number of studies investigating H2S-mediated renoprotection during 

cold IRI, little is known regarding the specific cellular actions of H2S in this context. Therefore, 

the second aim of our study was to identify a potential cellular mechanism through which H2S 

can protect renal epithelial cells during cold renal IRI. It has recently been suggested that 

mitochondria are a primary site of H2S activity. While H2S exerts toxic effects at high 

concentrations through inhibition of cytochrome c in the ETC, it has been conversely shown to 

stimulate ATP production at lower concentrations by donating electrons to the ETC between 

complexes II and III via the enzyme sulfide:quinone oxidoreductase (SQR) (32). The idea that 

specific mitochondrial actions are important contributors to H2S-mediated cytoprotection has 

been substantiated by the observations of several studies that H2S treatment preserves 
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mitochondrial membrane integrity and function during cellular injury (23,24,34). It has also been 

shown that the cytosolic H2S-producing enzyme, CSE, can translocate to mitochondria during 

cellular injury, presumably to produce H2S where it is needed most to mediate cellular stress 

responses (25). Therefore, to investigate whether mitochondrial actions of H2S are important to 

mediating its protective effects during cold renal IRI, we treated renal epithelial cells with either 

the non-specific H2S donor, GYY4137, or the mitochondrial-targeted H2S donor, AP39, and 

exposed them to a physiologically relevant in vitro model of cold H/R injury. While GYY4137 

and AP39 are both synthetic donors that release H2S in a controlled manner similar to 

physiological production, AP39 contains a cationic triphenylphosphonium (TPP+) group that 

allows the compound to home to mitochondria before releasing H2S (28,29). Our experiments 

showed that treatment with AP39 at nM levels drastically improved cellular viability, reduced 

ROS production and preserved mitochondrial membrane integrity following cold H/R injury 

compared to untreated cells. Contrastingly, GYY4137 was only able to protect cells at µM 

levels, though it was not as effective as AP39 even at 1000-fold increased concentrations. This 

study is the first to investigate the potential protective effects of H2S using a physiologically 

relevant in vitro model of cold H/R injury rather than artificially simulating warm ischemic 

injury via chemical induction of hypoxia-inducible factor 1 (HIF-1), ETC inhibition or oxidative 

stress. Our findings indicate that targeting of H2S release to mitochondria improves its 

cytoprotective potency during cold H/R injury by >1000-fold and that the mitochondrial actions 

of H2S may be sufficient to confer renoprotection against ischemic injury. We also show that 

treatment of donor kidneys with AP39 at a similar concentration during prolonged cold storage 

significantly improves graft function and survival compared to UW alone. This observation 

demonstrates that AP39 is effective against cold IRI in vivo and again confirms the increased 
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potency of mitochondrial-targeted H2S release, as our previous RTx models required use of 

~1000-fold higher concentrations of the non-specific sulfide salt, NaSH, to achieve a similar 

protective benefit during prolonged cold storage (21,22).  

There are a number of mitochondrial processes that could be influenced by H2S during cold IRI. 

As previously described, low levels of H2S can stimulate ATP production through donation of 

electrons to the ETC (32). In the absence of O2 and nutrients during ischemia, this action of H2S 

could potentially minimize the detrimental impact of ATP depletion on cellular function and 

viability. Two recent studies by the same research group have shown that nM levels of AP39 can 

stimulate mitochondrial respiration and ATP production and are cytoprotective against oxidative 

stress in both endothelial and renal epithelial cells (35,36). The authors also showed that 

treatment of rats with AP39 during warm bilateral renal ischemia improved renal function and 

decreased oxidative stress and inflammation following reperfusion (36). These studies establish 

that stimulation of mitochondrial bioenergetics could be a viable protective mechanism through 

of H2S during cellular injury. However, another possibility is that H2S modulates mitochondrial 

ion channels during ischemic injury. It is well known that H2S can both activate and inhibit ion 

channel activity through persulfidation of various ion channel subunits (37).  One recent study 

has shown that treatment of rats with AP39 can inhibit T-type Ca2+ channel activity on 

myocardial cell membranes (38), which could provide the basis for a similar effect on 

mitochondrial Ca2+ channels in our model. Considering the importance of mitochondrial Ca2+ 

influx and subsequent mitochondrial swelling in the pathogenesis of IRI, H2S potentially prevent 

MPTP formation during IRI via modulation of mitochondrial Ca2+ channel activity to pump out 

incoming Ca2+ ions or blunt initial Ca2+ influx. Due to its pleiotropic effects, the specific 
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mitochondrial mechanisms of H2S during ischemic injury will require much further study to 

definitively characterize. 

In order to translate our findings to improve clinical outcomes for renal transplant patients, 

studies that demonstrate the safety and efficacy of delivery of H2S to human donor kidney tissue 

should be pursued. Impactful studies could be designed that obtain discarded human donor 

kidneys and assess whether preservation in solution supplemented with H2S could improve the 

health of these kidneys to such a degree that they could be utilized for transplantation. Another 

potential strategy to speed clinical translational of H2S-based preservation techniques is to 

investigate the renoprotective effects of H2S-releasing compounds derived from organic sources 

already approved for treatment of unrelated conditions. Two such potential substances are 

thiosulfate and aged garlic extract (AGE). Thiosulfate is a naturally occurring intermediate of 

sulfur metabolism and is currently used as a part of treatment regimens for clinical conditions 

including calciphylaxis and cyanide poisoning (39,40). However, thiosulfate has also recently 

been shown to produce H2S under physiological conditions and mediate protection of neurons 

from ischemic injury (41,42). Aged garlic extract is known to exert potent anti-oxidant effects 

and has a wide variety of clinical applications, including reduction of blood pressure in 

hypertensive patients and slowing the progression of atherosclerotic plaques (43-45). While the 

most well studied component of AGE is the anti-oxidant S-allylcysteine (SAC), it also contains 

polysulfide compounds diallyl-disulfide (DADS) and diallyl-trisulfide (DATS) that have been 

shown to be sources of H2S production (46). A few studies have shown that application of garlic 

and it H2S-producing derivatives can mitigate injury associated with warm IRI, particularly in 

renal and myocardial tissue (47,48). Given their ability to produce H2S and mitigate warm 

ischemic injury in a variety of tissues, along with their current use as part of standard clinical 
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treatments, these two therapeutic substances appear to have considerable potential for improving 

clinical preservation of donor kidneys.  

 

In conclusion, treatment of donor kidneys with H2S mitigates ATN and apoptosis associated with 

prolonged cold storage and improves allograft function and survival in the acute phase following 

allogeneic RTx. Targeting of H2S release to mitochondria improves the potency of H2S-mediated 

protection in both a physiologically relevant in vitro model of cold renal H/R injury and an in 

vivo model of prolonged cold storage and syngeneic RTx. Our findings provide a strong base of 

evidence to support the notion that treatment of donor kidneys with H2S could represent a novel, 

cost-effective strategy to minimize the deleterious impact of prolonged cold IRI during RTx and 

ultimately improve clinical outcomes for renal transplant patients. 
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Figure Legends 

Figure 1. H2S improves renal allograft survival and function following 24-hour cold organ 

storage and allogeneic renal transplantation. Survival rates (A) and serum creatinine levels 

(B) of renal transplant recipient Lewis rats receiving donor Brown Norway kidneys perfused and 

stored in UW solution only (UW; n=8) or UW solution plus 150 µM NaSH (H2S; n=8) for 24 

hours at 4°C as well as sham-operated Lewis rats (Sham; n=5). Survival data analyzed via 

Kaplan-Meier survival analysis and log rank test. Serum creatinine data analyzed via one-way 

ANOVA and Tukey’s post-hoc test. Lines indicate mean serum creatinine. *p<0.05; **p<0.01; 

***p<0.001. 

Figure 2. H2S mitigates renal allograft apoptosis following 24-hour cold organ storage and 

allogeneic renal transplantation. (A) Representative images (10X magnification) of renal 

allograft sections perfused and stored in UW solution only (UW) or UW solution plus 150 µM 

NaSH (H2S) for 6 hours at 4°C as well as sham-operated Brown Norway rats (Sham) stained 

with TUNEL showing staining for fragmented DNA, a marker of cellular apoptosis. Arrows 

indicate cells positive for staining of fragmented DNA. (B) Corresponding digital analysis of 

absolute numbers of apoptotic cells in TUNEL sections. Background was subtracted from 

images and the colour threshold (RGB) was adjusted uniformly for each section so that only 

positively stained areas would be measured. Sections were obtained at POD 2-4 (Sham, n=3; 

UW, n=7; H2S, n=8) and POD 6-14 (UW, n=1; H2S, n=7). *p<0.05.  
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Figure 3. H2S may mitigate renal allograft necrosis scores but does not modulate acute 

allograft rejection following 24-hour cold organ storage and allogeneic renal 

transplantation. (A) Acute tubular necrosis (ATN) scores of renal allograft sections perfused 

and stored in UW solution only (UW) or UW solution plus 150 µM NaSH (H2S) for 24 hours at 

4°C as well as sham-operated Brown Norway rats (Sham) stained with Hematoxlyin & Eosin. 

Sections were assessed for the presence of necrotic tubules that exhibit loss of nuclei and 

necrotic casts with a background of congestion and assigned a score for ATN out of 5, (0 = 0% 

graft ATN, 1 = <10% graft ATN, 2 = 11-25% graft ATN, 3 = 26-45% graft ATN, 4 = 46-75% 

graft ATN, 5 = >75% graft ATN) (B) Acute rejection scores of renal allograft sections stained 

with H&E and scored for tubulitis, vasculitis and inflammation according to the Banff 97 

working classification of renal allograft pathology. Sections were scored by a blinded transplant 

pathologist and tubulitis, vasculitis and inflammation scores were out of 3. Sections were 

obtained at POD 2-4 (Sham, n=5; UW, n=7; H2S, n=7) and POD 6-14 (H2S, n=7). Lines indicate 

median pathological score. *p<0.05; **p<0.01; ****p<0.0001. 

Figure 4. H2S decreases renal allograft necrosis immediately following 24-hour cold organ 

storage. (A) Representative fluorescent microscopic images (40X magnification) of kidney 

sections taken from donor Brown Norway kidneys perfused and stored in UW solution only 

(UW; n=8) or UW solution plus 150 µM NaSH (H2S; n=8) for 24 hours at 4°C as well as 

kidneys obtained prior to cold storage (Pre-storage; n=8). Kidneys were perfused with 5 µM 

EthD-1 following cold storage and subsequently placed in formalin for histological analysis. 

Sections were also stained with the nuclear marker DAPI. (B) Digital quantification of EthD-1 

fluorescence levels. Sections digitally quantified via ImageJ analysis and values are mean EthD-
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1 fluorescence of 5 random fields of view (20X magnification) taken per sample. Lines indicate 

mean EthD-1 fluorescence per treatment group. *p<0.05, **p<0.01. 

Figure 5. Targeting of H2S release to mitochondria improves potency of protective effects 

during in vitro cold hypoxia/hypercapnia and re-oxygenation (H/R) injury. Cellular viability 

levels of rat kidney epithelial (NRK-52E; ATCC) cells following in vitro cold H/R injury. 

Control cells were cultured in DMEM + 5% fetal bovine serum (FBS) at 37 ºC in room O2 and 

5% CO2. Experimental cells were treated with either phosphate-buffered saline (PBS) alone or 

PBS plus varying concentrations of GYY4137 (non-specific H2S donor) or AP39 

(mitochondrial-targeted H2S donor) and exposed to cold (12 ºC) hypoxia/hypercapnia (0.1% 

O2/15% CO2) for 24 hours (n=5 per treatment group). Cells were then re-oxygenated for 24 

hours in conditions identical to control cells and viability was assessed via flow cytometry using 

Annexin-V/7-AAD staining, indicating apoptosis and necrosis, respectively. (A) Representative 

FACS plots of healthy cells vs. injured cells. (B) Quantification of % viable (Annexin-V(-)/7-

AAD(-)) cells treated with either DMEM, PBS or PBS (+) 100-400 nM AP39 or GYY4137. (C) 

Quantification of % viable (Annexin-V(-)/7-AAD(-)) cells treated with either DMEM, PBS or 

PBS (+) 100-400 µM GYY4137. Bars indicate mean ± SEM. *p<0.05 vs. DMEM, δ p<0.05 vs. 

PBS, ϕ p<0.05 vs. 400 nM AP39. 

 

Figure 6. AP39 is more potent at reducing ROS production during in vitro cold 

hypoxia/hypercapnia and re-oxygenation (H/R) injury compared to GYY4137. Levels of 

ROS production in rat kidney epithelial (NRK-52E; ATCC) cells following in vitro cold H/R 

injury. Control cells were cultured in DMEM + 5% fetal bovine serum (FBS) at 37 ºC in room 
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O2 and 5% CO2. Experimental cells were treated with either phosphate-buffered saline (PBS) 

alone or PBS (+) 400 nM or 400 µM GYY4137 (non-specific H2S donor) or 400 nM AP39 

(mitochondrial-targeted H2S donor) and exposed to cold (12 ºC) hypoxia/hypercapnia (0.1% 

O2/15% CO2) for 24 hours (n=5 per treatment group). Cells were then re-oxygenated for 15 min 

in conditions identical to control cells and ROS production was assessed via flow cytometry 

using DHR-123 staining, which becomes fluorescent when oxidized by ROS. (A) Representative 

FACS plots of DHR-123 fluorescence in cells exposed to H/R injury. Quantification of (B) 

DHR-123 MFI and (C) %DHR-123 (+) cells in each treatment group. Bars indicate mean ± 

SEM. ****p<0.0001. 

Figure 7. AP39 preserves mitochondrial membrane potential following in vitro cold 

hypoxia/hypercapnia and re-oxygenation (H/R) injury. JC-1 staining in rat kidney epithelial 

(NRK-52E; ATCC) cells following in vitro cold H/R injury. Control cells were cultured in 

DMEM + 5% fetal bovine serum (FBS) at 37 ºC in room O2 and 5% CO2. Experimental cells 

were treated with either phosphate-buffered saline (PBS) alone or PBS (+) 400 nM or 400 µM 

GYY4137 (non-specific H2S donor) or 400 nM AP39 (mitochondrial-targeted H2S donor) and 

exposed to cold (12 ºC) hypoxia/hypercapnia (0.1% O2/15% CO2) for 24 hours (n=5 per 

treatment group). Cells were then re-oxygenated for 18 hours in conditions identical to control 

cells and mitochondrial membrane potential was assessed via flow cytometry using JC-1 

staining, which emits green fluorescence in monomer form, but emits red fluorescence when 

aggregated in polarized mitochondria. (A) Representative FACS plots of JC-1 staining in cells 

exposed to H/R injury. (B) Ratio of Red (+):Green (+) cells in each treatment group. Higher 

values indicate more cells with polarized (healthy) mitochondria. Bars indicate mean ± SEM. 

****p<0.0001. 
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Figure 8. AP39 improves renal allograft function and survival and reduces renal injury 

following 24-hour cold organ storage and allogeneic renal transplantation. Survival rates 

(A) and serum creatinine levels (B) of renal transplant recipient Lewis rats receiving donor 

Lewis kidneys perfused and stored in University of Wisconsin (UW) solution only (UW; n=5) or 

UW solution plus 200 nM of the mitochondrial-targeted H2S donor AP39 (AP39; n=3) for 24 

hours at 4°C as well as sham-operated Lewis rats (Sham; n=4). Lines indicate mean serum 

creatinine. *p<0.05. 
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