464 research outputs found

    Divergent roles of CprK paralogues from Desulfitobacterium hafniense in activating gene expression

    Get PDF
    Gene duplication and horizontal gene transfer play an important role in the evolution of prokaryotic genomes. We have investigated the role of three CprK paralogues from the cAMP receptor protein-fumarate and nitrate reduction regulator (CRP-FNR) family of transcriptional regulators that are encoded in the genome of Desulfitobacterium hafniense DCB-2 and possibly regulate expression of genes involved in the energy-conserving terminal reduction of organohalides (halorespiration). The results from in vivo and in vitro promoter probe assays show that two regulators (CprK1 and CprK2) have an at least partially overlapping effector specificity, with preference for ortho-chlorophenols, while meta-chlorophenols proved to be effectors for CprK4. The presence of a potential transposase-encoding gene in the vicinity of the cprK genes indicates that their redundancy is probably caused by mobile genetic elements. The CprK paralogues activated transcription from promoters containing a 14 bp inverted repeat (dehalobox) that closely resembles the FNR-box. We found a strong negative correlation between the rate of transcriptional activation and the number of nuclecitide changes from the optimal dehalobox sequence (TTAAT-N-4-ATTAA). Transcription was initiated by CprK4 from a promoter that is situated upstream of a gene encoding a methyl-accepting chemotaxis protein. This might be the first indication of taxis of an anaerobic bacterium to halogenated aromatic compounds

    A Bayesian approach to flow record infilling and extension for reservoir design

    No full text
    International audienceA Bayesian approach is described for dealing with the problem of infilling and generating stochastic flow sequences using rainfall data to guide the flow generation process, and including bounded (censored) observed flow and rainfall data to provide additional information. Solutions are obtained using a Gibbs sampling procedure. Particular problems discussed include developing new procedures for fitting transformations when bounded values are available, coping with additional information in the form of values, or bounds, for totals of flows across several sites, and developing relationships between annual flow and rainfall data. Examples are shown of both infilled values of unknown past river flows, with assessment of uncertainty, and realisations of flows representative of what might occur in the future. Several procedures for validating the model output are described and the central estimates of flows, taken as a surrogate for historical observed flows, are compared with long term regional flow and rainfall data

    Strange particle production in 158 and 40 AA GeV/cc Pb-Pb and p-Be collisions

    Full text link
    Results on strange particle production in Pb-Pb collisions at 158 and 40 AA GeV/cc beam momentum from the NA57 experiment at CERN SPS are presented. Particle yields and ratios are compared with those measured at RHIC. Strangeness enhancements with respect to p-Be reactions at the same beam momenta have been also measured: results about their dependence on centrality and collision energy are reported and discussed.Comment: Contribution to the proceedings of the "Hot Quarks 2004" Conference, July 18-24 2004, New Mexico, USA, submitted to Journal of Physics G 7 pages, 5 figure

    Hydraulic engineering in the 21st century: Where to?

    Get PDF
    For centuries, hydraulic engineers were at the forefront of science. The last forty years marked a change of perception in our society with a focus on environmental sustainability and management, particularly in developed countries. Herein, the writer illustrates his strong belief that the future of hydraulic engineering lies upon a combination of innovative engineering, research excellence and higher education of quality. This drive continues a long tradition established by eminent scholars like Arthur Thomas IPPEN, John Fisher KENNEDY and Hunter ROUSE

    Hydraulics of aerated flows: qui pro quo?

    Get PDF
    In turbulent free-surface flows, the deformation of the surface leads to air bubble entrainment and droplet projections when the turbulent shear stress is greater than the surface tension stress that resists to the interfacial breakup. These complex processes at the water-air interface have been the focus of extensive experimental, numerical and theoretical studies over last two decades and this paper reviews the key advancements. It is highlighted that the recent progress in metrology enables the detailed measurements of a range of air-water flow properties under controlled flow conditions, representing the sine qua non requirement for the development of improved physical understanding and for validating phenomenological and numerical models. The author believes that the future research into aerated flow hydraulics should focus on field measurements of high quality, development of new measurement approaches and data analyses tools, computational fluid dynamics modelling of aerated flows, and the mechanics of aerated flows in conduits

    A partial wave analysis of the centrally produced K+KK^{+}K^{-} and Ks0Ks0K^{0}_{s}K^{0}_{s} systems in pp interactions at 450 GeV/c and new information on the spin of the f1f_{1} (1710)

    Get PDF
    A partial wave analysis of the centrally produced K+K- and K0K0 channels has been performed in pp collisions using an incident beam momentum of 450 GeV/c. An unambiguous physical solution has been found in each channel. The striking feature is the observation of peaks in the S-wave corresponding to the f0(1500) and fJ(1710) with J = 0. The D-wave shows evidence for the f2(1270)/a2(1320), the f2(1525) and the f2(2150) but there is no evidence for a statistically significant contribution in the D-wave in the 1.7 GeV mass region
    corecore