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Abstract

Strange and multistrange baryon and antibaryon production has been studied in

sulphur sulphur interactions at 200 GeV/c per nucleon at central rapidity using

the CERN Omega Spectrometer. Particle production ratios and transverse mass

spectra are presented for �, ��, � and ��.
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The production of strange baryons and antibaryons is considered to be a useful

probe of the dynamics of hadronic matter under extreme conditions of temperature and

density[1, 2, 3] The relative abundances for di�erent species of baryons and antibaryons

yield information about the nature of avour equilibrium in the system formed in a heavy

ion collision[2, 4, 5]. In addition, the transverse mass spectra can be used to provide

independent estimates of temperature and to investigate collective ow. At equilibrium

the strangeness yields are expected to be considerably higher than in pp interactions,

whether or not a Quark-Gluon Plasma (QGP) is formed; however, the times required

to achieve equilibrium are very di�erent depending on whether the system undergoes a

phase transition or not[2, 6]. A rapid increase in the number of strange quarks occurs if

a QGP is formed, while the strangeness build-up in a purely hadronic system is much

slower, owing to the small cross sections for strangeness-producing reactions. Strange

and multistrange antibaryon production have particularly long equilibration times in a

baryon-rich system which does not undergo a phase transition, as antibaryon production

is in general disfavoured. In the absence of a phase transition, the hadronic system formed

in a sulphur-sulphur interaction is not thought to live long enough to allow strange and

multistrange antibaryons to reach their full equilibrium abundances. For this reason, it

has been argued[7] that abundance ratios between strange antibaryons, such as ��=�,

could be sensitive to a phase transition in the system in which the particles are produced.

Recently, string models have provided an alternative approach to strangeness pro-

duction in heavy ion collisions. The basis of such models is the description of low pT
hadron-hadron collisions in terms of interactions between strings[8]. Additional produc-

tion mechanisms (�nal state interactions, and, in the case of dense systems, a coales-

cence mechanism, such as colour rope formation[9], string fusion[10] or quark droplet

formation[11]) have to be considered in order to account for the observed strangeness

enhancement.

The WA94 experiment[12] is a dedicated experiment aimed at the study of strange

particle spectra in sulphur-sulphur interactions. The experiment was performed at the

CERN Omega Spectrometer. The data discussed in this paper were obtained using the

Omega Multi-Wire Proportional Chambers (MWPC) in buttery mode[13]. The layout

of the apparatus is shown in �gure 1. An incident sulphur beam, identi�ed using a quartz

Cerenkov counter, impinges on a 2% interaction length sulphur target. A downstream

quartz Cerenkov counter ensures there is no outgoing sulphur ion. A pulse-height mea-

surement in two scintillator counters placed above and below the beam, both covering

the pseudorapidity interval 2:2 � � � 3:5, is used to trigger on central interactions. Two

512 channel microstrip detectors, each with sensitive area 2:5 � 2:5 cm2, are placed be-

hind the trigger scintillators in order to sample the charged particle multiplicity in this

pseudorapidity interval. The Omega MWPCs and the target are positioned so as to se-

lect tracks coming from the target with a transverse momentum pT � 0:6 GeV/c in the

rapidity interval 2:4 � yLAB � 3:2. A downstream hadron calorimeter is used to mon-

itor forward energy. The trigger selects about 25% of the total inelastic cross section.

The rapidity interval is chosen so as to give the same centre of mass rapidity coverage

in sulphur-sulphur interactions as was used previously by the WA85 collaboration in sul-

phur tungsten interactions[14]. The apparatus is symmetric with respect to charge, giving

equal acceptances for particles and antiparticles. However, data were taken with both
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orientations of the magnetic �eld in order to check for residual systematic e�ects.

The selection procedure for V0s and cascades is very similar to that previously used

by the WA85 collaboration in SW interactions[14, 15], taking into account the modi�ca-

tions to the layout appropriate for sulphur sulphur interactions. Tracks reconstructed in

the MWPCs are combined to search for V0 and cascade candidates. A pair of oppositely

charged particles is considered as a V0 candidate if

1. the distance of closest approach between the two oppositely charged tracks is < 1:0

cm,

2. each track traces through the seven MWPCs,

3. the angle between the V0 line of ight from the target and the sum of the three-

momenta for the V0 decay tracks is < 0:75�, i.e. the candidate comes from the

target,

4. the decay distance is > 135 cm,

5. j�j > 0:45, where � is the Podolanski-Armenteros[16] asymmetry parameter � =

(pL+ � pL�)=(pL+ + pL�), and pL� denotes the decay track momentum component

parallel to the V 0 momentum, and

6. the decay tracks, when traced back to the target plane, miss the target in the bend

plane of the magnet; the impact parameters (�y) are required to be j�yj > 2:0 cm

for the (anti)proton track, and j�yj > 4:0 cm for the pion.

These cuts yield the mass spectra shown in �gures 2a and 2b. � (�) candidates

are selected in a 50 MeV interval centred on the � mass, giving 56 140 � and 18 014 �

candidates.

Cascade candidates are selected by combining a � (�) with a decay pion in order

to identify the decay sequence

�(�)! �(�)�; �(�)! p(p)�

We consider any combination of a � or � with a charged track of appropriate sign

as a cascade candidate if

1. the distance of closest approach between the line of ight of the � (�) and the

charged track is < 1:6 cm,

2. each decay track traces through the �rst four MWPCs (less restrictive than before),

3. the cascade decay distance is > 90 cm,

4. the cascade candidate comes from the target (j�yj of the cascade impact with

respect to the target centre < 2.0 cm),

5. the decay pion does not come from the target (j�yj > 6:0 cm for the decay track

impact at the target plane), and

6. the � vertex is downstream of the �� vertex.

The V0 is not required to point back to the target when selecting cascade candidates.

The resulting e�ective mass distributions for cascade candidates are shown in �gures 2c

and 2d. Clear peaks are seen at the �� and �� positions with little background. 547 ��

and 278 �� candidates are obtained by selecting events in a 100 MeV interval centred on

the �� mass.
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The transverse mass distributions for �, �, �� and �� particles are shown in �gure

3. In these distributions and for the rest of the analysis we have required 0:45 < j�j < 0:60

for � and � candidates, in order to avoid contamination from K0 decays. The distributions

are obtained in the rapidity interval 2:5 � yLAB � 3:0, and are corrected for acceptance,

unseen decay modes and reconstruction e�ciencies. In addition, the � and � distributions

have been corrected for feed-down from � and � decays. The distributions have been �tted

using the expression[17]
1

m
3=2
T

dN

dmT

= A exp(�mT=� ):

The inverse slopes obtained are given in table 1. They are slightly lower than those

obtained in a similar centre-of-mass rapidity interval (2:3 � yLAB � 2:8) by the WA85

collaboration[18].

The relative hyperon yields have also been determined. Ratios are presented in table

2 for 2:5 � yLAB � 3:0 in three di�erent intervals: 1:2 � pT � 3:0 GeV/c, 1:0 � pT � 2:0

GeV/c and mT � 1:9 GeV. Columns 1 and 3 correspond to our best acceptance region

and extrapolated values are given in column 2 in order to allow direct comparison with the

pp data. It is interesting to note that using the trigger selections of WA94 the strangeness

yield ratios obtained in sulphur-sulphur interactions are very similar to those obtained in

sulphur- tungsten interactions by the WA85 collaboration in an equivalent centre-of-mass

rapidity interval[18].

Figure 4 shows the ratios ��=� and ��=� for SS interactions (WA94) and SW

interactions (WA85), together with those from other processes. Note that the ratio ��=� is

three and a half times larger in both sulphur-induced reactions than the value (0:06�0:02)

obtained by the AFS collaboration in pp interactions[19], a 5 s.d. e�ect in each case.

In conclusion, results are presented for hyperon production in sulphur-sulphur in-

teractions. The inverse slopes for �, �, �� and �� have values around 210 MeV, slightly

lower than those obtained by the WA85 collaboration in SW interactions. Production ra-

tios have been obtained for �s, �s and their antiparticles. Similar ratios in SW interactions

have been interpreted in terms of a sudden hadronization QGP model[20], and, more re-

cently, in terms of string models with colour rope formation[21] or the Dual Parton Model

with diquark-antidiquark pairs in the nucleon sea[22]. In addition a direct comparison

with pp interactions shows that the ratio ��=� is considerably higher in sulphur-nucleus

than in pp interactions.
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Tables

Table 1: Inverse slopes of hyperons in SS interactions.

Particle inverse slope (MeV)

� 213 � 2

� 204 � 5

�� 222 � 10

�� 208 � 25

Table 2: Relative hyperon yields in SS interactions 2:5 < y < 3:0

Ratio 1:2 < pT < 3:0 GeV/c 1:0 < pT < 2:0 GeV/c mT > 1:9 GeV/c

�/� 0.23 � 0.01 0.24 � 0.01 0.22 � 0.01

��/�� 0.55 � 0.07 0.58 � 0.07 0.54 � 0.06

��/� 0.09 � 0.01 0.08 � 0.01 0.18 � 0.01

��/� 0.21 � 0.02 0.20 � 0.02 0.44 � 0.04
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Figures

1. Layout of the WA94 experiment.

2. (a) p�� e�ective mass distribution, (b) p�+ e�ective mass distribution. (c) ���

e�ective mass distribution, (d) ��+ e�ective mass distribution.

3. Transverse mass distributions for (a) �� and �, and (b) �� and �.

4. ��=� and ��=� ratios for di�erent reactions.
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