4 research outputs found

    Assembly of female and male hihi genomes (stitchbird; Notiomystis cincta) enables characterization of the W chromosome and resources for conservation genomics

    Get PDF
    A high-quality reference genome can be a valuable resource for threatened species by providing a foundation to assess their evolutionary potential to adapt to future pressures such as environmental change. We assembled the genome of a female hihi (Notiomysits cincta), a threatened passerine bird endemic to Aotearoa New Zealand. The assembled genome is 1.06 Gb, and is of high quality and highly contiguous, with a contig N50 of 7.0 Mb, estimated QV of 44 and a BUSCO completeness of 96.8%. A male assembly of comparable quality was generated in parallel. A population linkage map was used to scaffold the autosomal contigs into chromosomes. Female and male sequence coverage and comparative genomics analyses were used to identify Z-, and W-linked contigs. In total, 94.6% of the assembly length was assigned to putative nuclear chromosome scaffolds. Native DNA methylation was highly correlated between sexes, with the W chromosome contigs more highly methylated than autosomal chromosomes and Z contigs. 43 differentially methylated regions were identified, and these may represent interesting candidates for the establishment or maintenance of sex differences. By generating a high-quality reference assembly of the heterogametic sex, we have created a resource that enables characterization of genome-wide diversity and facilitates the investigation of female-specific evolutionary processes. The reference genomes will form the basis for fine-scale assessment of the impacts of low genetic diversity and inbreeding on the adaptive potential of the species and will therefore enable tailored and informed conservation management of this threatened taonga (treasured) species

    Genetic interaction networks mediate individual statin drug response in Saccharomyces cerevisiae

    No full text
    Eukaryotic genetic interaction networks (GINs) are extensively described in the Saccharomyces cerevisiae S288C model using deletion libraries, yet being limited to this one genetic background, not informative to individual drug response. Here we created deletion libraries in three additional genetic backgrounds. Statin response was probed with five queries against four genetic backgrounds. The 20 resultant GINs representing drug-gene and gene-gene interactions were not conserved by functional enrichment, hierarchical clustering, and topology-based community partitioning. An unfolded protein response (UPR) community exhibited genetic background variation including different betweenness genes that were network bottlenecks, and we experimentally validated this UPR community via measurements of the UPR that were differentially activated and regulated in statin-resistant strains relative to the statin-sensitive S288C background. These network analyses by topology and function provide insight into the complexity of drug response influenced by genetic background.status: publishe

    Identification and Bioactivity of 3-<i>epi</i>-Xestoaminol C Isolated from the New Zealand Brown Alga <i>Xiphophora chondrophylla</i>

    No full text
    We report here the bioassay-guided isolation of a new 1-deoxysphingoid, 3-<i>epi</i>-xestoaminol C (<b>1</b>), isolated from the New Zealand brown alga <i>Xiphophora chondrophylla</i>. This is the first report of a 1-deoxysphingoid from a brown alga. We describe the isolation and full structure elucidation of this compound, including its absolute configuration, along with its bioactivity against mycobacteria and mammalian cell lines and preliminary mechanism of action studies using yeast chemical genomics
    corecore