209 research outputs found

    Chromosome abnormalities in Japanese quail embryos

    Get PDF

    Retrospective harm benefit analysis of pre-clinical animal research for six treatment interventions

    Get PDF
    The harm benefit analysis (HBA) is the cornerstone of animal research regulation and is considered to be a key ethical safeguard for animals. The HBA involves weighing the anticipated benefits of animal research against its predicted harms to animals but there are doubts about how objective and accountable this process is.i. To explore the harms to animals involved in pre-clinical animal studies and to assess these against the benefits for humans accruing from these studies; ii. To test the feasibility of conducting this type of retrospective HBA.Data on harms were systematically extracted from a sample of pre-clinical animal studies whose clinical relevance had already been investigated by comparing systematic reviews of the animal studies with systematic reviews of human studies for the same interventions (antifibrinolytics for haemorrhage, bisphosphonates for osteoporosis, corticosteroids for brain injury, Tirilazad for stroke, antenatal corticosteroids for neonatal respiratory distress and thrombolytics for stroke). Clinical relevance was also explored in terms of current clinical practice. Harms were categorised for severity using an expert panel. The quality of the research and its impact were considered. Bateson's Cube was used to conduct the HBA.The most common assessment of animal harms by the expert panel was 'severe'. Reported use of analgesia was rare and some animals (including most neonates) endured significant procedures with no, or only light, anaesthesia reported. Some animals suffered iatrogenic harms. Many were kept alive for long periods post-experimentally but only 1% of studies reported post-operative care. A third of studies reported that some animals died prior to endpoints. All the studies were of poor quality. Having weighed the actual harms to animals against the actual clinical benefits accruing from these studies, and taking into account the quality of the research and its impact, less than 7% of the studies were permissible according to Bateson's Cube: only the moderate bisphosphonate studies appeared to minimise harms to animals whilst being associated with benefit for humans.This is the first time the accountability of the HBA has been systematically explored across a range of pre-clinical animal studies. The regulatory systems in place when these studies were conducted failed to safeguard animals from severe suffering or to ensure that only beneficial, scientifically rigorous research was conducted. Our findings indicate a pressing need to: i. review regulations, particularly those that permit animals to suffer severe harms; ii. reform the processes of prospectively assessing pre-clinical animal studies to make them fit for purpose; and iii. systematically evaluate the benefits of pre-clinical animal research to permit a more realistic assessment of its likely future benefits

    The effect of household heads training about the use of treated bed nets on the burden of malaria and anaemia in under-five children: a cluster randomized trial in Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-lasting insecticide-treated bed nets (LLITN) have demonstrated a significant effect in reducing malaria-related morbidity and mortality. However, barriers on the utilization of LLITN have hampered the desired outcomes. The aim of this study was to assess the effect of community empowerment on the burden of malaria and anaemia in under-five children in Ethiopia.</p> <p>Methods</p> <p>A cluster randomized trial was done in 22 (11 intervention and 11 control) villages in south-west Ethiopia. The intervention consisted of tailored training of household heads about the proper use of LLITN and community network system. The burden of malaria and anaemia in under-five children was determined through mass blood investigation at baseline, six and 12 months of the project period. Cases of malaria and anaemia were treated based on the national protocol. The burden of malaria and anaemia between the intervention and control villages was compared using the complex logistic regression model by taking into account the clustering effect. Eight Focus group discussions were conducted to complement the quantitative findings.</p> <p>Results</p> <p>A total of 2,105 household heads received the intervention and the prevalence of malaria and anaemia was assessed among 2410, 2037 and 2612 under-five children at baseline, six and 12 months of the project period respectively. During the high transmission/epidemic season, children in the intervention arm were less likely to have malaria as compared to children in the control arm (OR = 0.42; 95%CI: 0.32, 0.57). Symptomatic malaria also steadily declined in the intervention villages compared to the control villages in the follow up periods. Children in the intervention arm were less likely to be anaemic compared to those in the control arm both at the high (OR = 0.84; 95%CI: 0.71, 0.99)) and low (OR = 0.73; 95%CI: 0.60, 0.89) transmission seasons.</p> <p>Conclusion</p> <p>Training of household heads on the utilization of LLITN significantly reduces the burden of malaria in under-five children. The Ministry of Health of Ethiopia in collaboration with other partners should design similar strategies in high-risk areas to control malaria in Ethiopia.</p> <p>Trial registration</p> <p>Australia and New Zealand Clinical Trials Register (ANZCTR): <a href="http://www.anzctr.org.au/ACTRN12610000035022.aspx">ACTRN12610000035022</a></p

    The effect of household heads training on long-lasting insecticide-treated bed nets utilization: a cluster randomized controlled trial in Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-lasting insecticide-treated bed nets (LLITN) have demonstrated significant impact in reducing malaria-related childhood morbidity and mortality. However, utilization of LLITN by under-five children is not satisfactory in many sub-Saharan African countries due to behavioural barriers. Previous studies had focused on the coverage and ownership of LLITN. The effect of skill-based training for household heads on LLITN utilization had not yet been investigated. A cluster-randomized trial on the effect of training of household heads on the use of LLITN was done in Ethiopia to fill this knowledge gap.</p> <p>Methods</p> <p>The study included 22 (11 intervention and 11 control) villages in southwest Ethiopia. The intervention consisted of tailored training of household heads about the proper use of LLITN and community network system. All households in each group received free LLITN. Data were collected at baseline, six and 12 months of the follow up periods. Utilization of LLITN in the control and intervention villages was compared at baseline and follow up periods.</p> <p>Results</p> <p>A total of 21,673; 14,735 and 13,758 individuals were included at baseline, sixth and twelfth months of the project period. At the baseline survey, 47.9% of individuals in the intervention villages and 68.4% in the control villages reported that they had utilized LLITN the night before the survey. At the six month, 81.0% of individuals in the intervention villages and 79.3% in the control villages had utilized LLITN. The utilization of LLITN in all age groups in the intervention villages was increased by 17.7 percentage point (95% CI 9.7-25.6) at sixth month and by 31.0 percentage point (95% CI 16.9-45.1) at the twelfth month. Among under-five children, the LLITN utilization increased by 31.6 percentage point (95% CI 17.3-45.8) at the sixth month and 38.4 percentage point (95% CI 12.1-64.7) at the twelfth months of the project period.</p> <p>Conclusion</p> <p>Household level skill-based training has demonstrated a marked positive effect in the utilization of LLITN. The effect of the intervention steadily increased overtime. Therefore, distribution of LLITN should be accompanied by a skill-based training of household heads to improve its utilization.</p> <p>Trail registration</p> <p>Australian New Zealand Clinical Trials Registry (ACTR number: <a href="http://www.anzctr.org.au/ACTRN12610000035022.aspx">ACTRN12610000035022</a>).</p

    Role of Chaperone Mediated Autophagy (CMA) in the Degradation of Misfolded N-CoR Protein in Non-Small Cell Lung Cancer (NSCLC) Cells

    Get PDF
    Nuclear receptor co-repressor (N-CoR) plays important role in transcriptional control mediated by several tumor suppressor proteins. Recently, we reported a role of misfolded-conformation dependent loss (MCDL) of N-CoR in the activation of oncogenic survival pathway in acute promyelocytic leukemia (APL). Since N-CoR plays important role in cellular homeostasis in various tissues, therefore, we hypothesized that an APL like MCDL of N-CoR might also be involved in other malignancy. Indeed, our initial screening of N-CoR status in various leukemia and solid tumor cells revealed an APL like MCDL of N-CoR in primary and secondary tumor cells derived from non-small cell lung cancer (NSCLC). The NSCLC cell specific N-CoR loss could be blocked by Kaletra, a clinical grade protease inhibitor and by genistein, an inhibitor of N-CoR misfolding previously characterized by us. The misfolded N-CoR presented in NSCLC cells was linked to the amplification of ER stress and was subjected to degradation by NSCLC cell specific aberrant protease activity. In NSCLC cells, misfolded N-CoR was found to be associated with Hsc70, a molecular chaperone involved in chaperone mediated autophagy (CMA). Genetic and chemical inhibition of Lamp2A, a rate limiting factor of CMA, significantly blocked the loss of N-CoR in NSCLC cells, suggesting a crucial role of CMA in N-CoR degradation. These findings identify an important role of CMA-induced degradation of misfolded N-CoR in the neutralization of ER stress and suggest a possible role of misfolded N-CoR protein in the activation of oncogenic survival pathway in NSCLC cells

    Effect of training on the use of long-lasting insecticide-treated bed nets on the burden of malaria among vulnerable groups, south-west Ethiopia: baseline results of a cluster randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Ethiopia, the utilization of long-lasting insecticide-treated bed nets (LLITN) is hampered by behavioural factors such as low awareness and negative attitude of the community. The aim of this study was to present the design and baseline results of a cluster randomized trial on the effect of training of household heads on the use of LLITN.</p> <p>Methods</p> <p>This baseline survey was undertaken from February to March, 2009 as part of a randomized cluster trial. A total of 11 intervention and 11 control <it>Gots </it>(villages) were included in the Gilgel Gibe Field Research Centre, south-west Ethiopia. House to house visit was done in 4135 households to collect information about the use of LLITN and socio-demographic variables. For the diagnosis of malaria and anaemia, blood samples were collected from 2410 under-five children and 242 pregnant women.</p> <p>Results</p> <p>One fourth of the households in the intervention and control <it>Gots </it>had functional LLITN. Only 30% of the observed LLITN in the intervention and 28% in the control <it>Gots </it>were hanged properly. Adults were more likely to utilize LLITN than under-five children in the control and intervention <it>Gots</it>. The prevalence of malaria in under-five children in the intervention and control <it>Gots </it>was 10.5% and 8.3% respectively. The intervention and control <it>Gots </it>had no significant difference concerning the prevalence of malaria in under-five children, [OR = 1.28, (95%CI: 0.97, 1.69)]. Eight (6.1%) pregnant women in the intervention and eight (7.2%) in the control <it>Gots </it>were positive for malaria (P = 0.9). Children in the intervention <it>Gots </it>were less likely to have anaemia than children in the control <it>Gots</it>, [OR = 0.75, (95%CI: 0.62, 0.85)].</p> <p>Conclusion</p> <p>The availability and utilization of LLITN was low in the study area. The prevalence of malaria and anaemia was high. Intervention strategies of malaria should focus on high risk population and vulnerable groups.</p

    Environmentally induced changes in antioxidant phenolic compounds levels in wild plants

    Full text link
    [EN] Different adverse environmental conditions cause oxidative stress in plants by generation of reactive oxygen species (ROS). Accordingly, a general response to abiotic stress is the activation of enzymatic and non-enzymatic antioxidant systems. Many phenolic compounds, especially flavonoids, are known antioxidants and efficient ROS scavengers in vitro, but their exact role in plant stress responses in nature is still under debate. The aim of our work is to investigate this role by correlating the degree of environmental stress with phenolic and flavonoid levels in stress-tolerant plants. Total phenolic and antioxidant flavonoid contents were determined in 19 wild species. Meteorological data and plant and soil samples were collected in three successive seasons from four Mediterranean ecosystems: salt marsh, dune, semiarid and gypsum habitats. Changes in phenolic and flavonoid levels were correlated with the environmental conditions of the plants and were found to depend on both the taxonomy and ecology of the investigated species. Despite species-specific differences, principal component analyses of the results established a positive correlation between plant phenolics and several environmental parameters, such as altitude, and those related to water stress: temperature, evapotranspiration, and soil water deficit. The correlation with salt stress was, however, very weak. The joint analysis of all the species showed the lowest phenolic and flavonoid levels in the halophytes from the salt marsh. This finding supports previous data indicating that the halophytes analysed here do not undergo oxidative stress in their natural habitat and therefore do not need to activate antioxidant systems as a defence against salinity.This work has been funded by the Spanish Ministry of Science and Innovation (Project CGL2008-00438/BOS), with contribution from the European Regional Development Fund. Thanks to Dr. Rafael Herrera for critical reading of the manuscript.Bautista, I.; Boscaiu, M.; Lidón, A.; Llinares Palacios, JV.; Lull, C.; Donat-Torres, MP.; Mayoral García-Berlanga, O.... (2016). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum. 38(1):1-15. https://doi.org/10.1007/s11738-015-2025-2S115381Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168:204–212Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M (2013) Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem 72:35–45Albert A, Sareedenchai V, Heller W, Seidlitz HK, Zidorn C (2009) Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO. Oecologia 160:1–8Appel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399Bachereau F, Marigo G, Asta J (1998) Effect of solar radiation (UV and visible) at high altitude on CAM-cycling and phenolic compounds biosynthesis in Sedum album. Physiol Plant 104:203–210Ballizany WL, Hofmann RV, Jahufer MZZ, Barrett BB (2012) Multivariate associations of flavonoid and biomass accumulation in white clover (Trifolium repens) under drought. Funct Plant Biol 39:167–177Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126:1105–1115Bilger W, Rolland M, Nybakken L (2007) UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem Photobiol Sci 6:190–195Blumthaler M, Ambach M, Ellinger R (1997) Increase in solar UV radiation with altitude. J Photochem Photobiol B 39:130–134Boscaiu M, Lull C, Llinares J, Vicente O, Boira H (2013) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. J Plant Ecol 6:177–186Bose J, Rodrigo-Moreno A, Shabala S (2013) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as a negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380Burriel F, Hernando V (1947) Nuevo método para determinar el fósforo asimilable en los suelos. Anales de Edafología Fisiología Vegetal 9:611–622Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20Coman C, Rugina OD, Socaciu C (2012) Plants and natural compounds with antidiabetic action. Not Bot Horti Agrobo 40:314–325Di Ferdinando M, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 159–179Di Ferdinando M, Brunetti C, Agati G, Tattini M (2014) Multiple functions of polyphenols in plants inhabiting unfavourable Mediterranean areas. Environ Exper Bot 103:107–116FAO (1990) Management of gypsiferous soils. FAO Soils Bull, p 62Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–711Gil R, Lull C, Boscaiu M, Bautista I, Lidón A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Not Bot Horti Agrobo 39:9–17Gil R, Bautista I, Boscaiu M, Lidón A, Wankhade S, Sánchez H, Llinares J, Vicente O (2014) Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants 6: plu049Gould KS, Lister C (2006) Flavonoid function in plants. In: Andersen ØM, Marham KR (eds) Flavonoids, chemistry, biochemistry and application. CRC Press, Boca Raton, pp 397–442Hajimahmoodi M, Moghaddam G, Ranjbar AM, Khazani H, Sadeghi N, Oveisi MR, Jannat B (2013) Total phenolic, flavonoids, tannin content and antioxidant power of some Iranian pomegranate flower cultivars (Punica granatum L.). Am J Plant Sci 4:1815–1820Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322Harborne JB, Williams C (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504Hernández I, Alegre L, Munné-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2008) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299Jaakola L, Määttä-Riihinen K, Kärenlampi S, Hohtola A (2004) Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218:721–728Jenkins GI (2009) Signal transduction in responses to UB-B radiation. Annu Rev Plant Biol 60:407–431Jenkins GI, Long JC, Wade HK, Shenton MR, Bibikova TN (2001) UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis. New Phytol 151:121–131Kaulen H, Schell J, Kreuzaler F (1986) Light-induced expression of the chimeric chalcone synthase-NPTII gene in tobacco cells. EMBO J 5:1–8Kim DO, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326Kirakosyan A, Seymour E, Kaufman PB, Warber S, Bolling S, Chang SC (2003) Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress. J Agr Food Chem 51:3973–3976Knudssen D, Peterson GA, Pratt PF (1982) Lithium, Sodium and Potassium. In: Page AL et al (eds) Methods of soil analysis, chemical and microbiological properties. American Society of Agronomy, Madison, pp 225–246Koes RE, Spelt CE, Mol JNM (1989) The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction. Plant Mol Biol 12:213–225Körner C (1999) Alpine plant life. Functional plant ecology of high mountain ecosytems, BerlinKumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16Kuo S (1996) Phosphorus. In: Spark D (ed) Methods of soil analysis: chemical methods, part 3. American Society of Agronomy, Madison, pp 869–919Lavola A (1998) Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol 18:53–58Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B radiation. Plant Cell 5:171–179Llinares JV, Bautista I, Donat MP, Lidón A, Lull C, Mayoral O, Wankhade S, Boscaiu M, Vicente O (2015) Responses to environmental stress in plants adapted to Mediterranean gypsum habitats. Not Sci Biol 7:34–44Marinova D, Ribarova F, Atanassova M (2005) Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J Univ Chem Technol Metall 40:255–260Martens H, Naes T (1989) Multivariate calibration. Wiley, New YorkMurai Y, Takemura S, Takeda K, Kitajima K, Iwashina T (2009) Altitudinal variation of UV-absorbing compounds in Plantago asiatica. Biochem Syst Ecol 37:78–384Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–379Napoli CA, Fahy D, Wang HY, Taylor LP (1999) white anther: a petunia mutant that abolishes pollen flavonoid accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiol 120:615–622Nechita A, Cotea VV, Nechita CB, Pincu RR, Mihai CT, Colibaba CL (2012) Study of cytostatic and cytotoxic activity of several polyphenolic extracts obtained from Vitis vinifera. Not Bot Horti Agrobo 40:216–221Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of soil analysis, chemical and microbiological properties. Soil Science Society of America, Madison, pp 539–577Nelson RE, Klameth LC, Nettleton WD (1978) Determining soil gypsum content and expressing properties of gypsiferous soils. Soil Sci Soc Am J 42:659–661Nile SH, Khobragade CN (2010) Antioxidant activity and flavonoid derivatives of Plumbago zeylanica. J Nat Prod 3:130–133Park HL, Lee SW, Jung KH, Hahn TR, Cho MH (2013) Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. Phytochemistry 96:57–71Pękal A, Pyrzynska K (2014) Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Method 7:1776–1782Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233Ravishankar D, Rajora AK, Greco F, Osborn HM (2013) Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell B 45:2821–2831Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio Med 20:933–956Rieger G, Müller M, Guttenberger H, Bucar F (2008) Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus. J Agric Food Chem 58:9080–9086Rivas-Martínez S, Rivas-Saenz S (1996–2009) Worldwide bioclimatic classification system. Phytosociological Research Center, Spain. http://www.globalbioclimatics.org . Accessed 1 July 2013Rohman A, Riyanto S, Yuniarti N, Saputra WR, Utami R, Mulatsih W (2010) Antioxidant activity, total phenolic, and total flavonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). Int Food Res J 17:97–106Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F (2013) Novel insights into the pharmacology of flavonoids. Phytother Res 27:1588–1596Rozema J, van de Staaij J, Björn LO, Caldwell MM (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28Rozema J, Bjorn LO, Bornman JF, Gaberščik A, Häder DP, Trošt T, Germ M, Klisch M, Gröniger A, Sinha RP, Lebert M, He YY, Buffoni-Hall R, de Bakker NVJ, van de Staaij J, Meijkamp BB (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems—an experimental and functional analysis of the evolution of UV-absorbing compounds. Photochem Photobiol B Biol 66:2–12Schulze-Lefert P, Dangl JL, Becker-André M, Hahlbrock K, Schulz W (1989) Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J 8:651–656Sena MM, Frighetto RTS, Valarini PJ, Tokeshi H, Poppi RJ (2002) Discrimination of management effects on soil parameters by using principal component analysis: a multivariate analysis case study. Soil Till Res 67:171–181Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141:367–372Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J EnolVitic 16:144–158Spitaler R, Winkler A, Lins I, Yanar S, Stuppner H, Zidorn C (2008) Altitudinal variation of phenolic contents in flowering heads of Arnica montana cv. ARBO: a 3-year comparison. J Chem Ecol 34:369–375Stapleton AE, Walbot V (1994) Flavonoids can protect maize DNA from the induction of UV radiation damage. Plant Physiol 105:881–889Takahashi M, Asada K (1988) Superoxide production in aprotic interior of chloroplast thylakoids. Arch Biochem Biophys 267:714–722Tattini M, Gravano E, Pinelli P, Mulinacci N, Romani A (2000) Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148:69–77Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573Winkel-Shirley B (2002) Biosynthesis of flavonoids and effect of stress. Curr Opin Plant Biol 5:218–223Ylstra B, Touraev A, Benito Moreno RM, Stöger E, van Tunen AA, Vicente O, Mol JNM, Heberle-Bors E (1992) Flavonols stimulate development, germination and tube growth of tobacco pollen. Plant Physiol 100:902–907Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559Zidorn C, Schubert B, Stuppner H (2005) Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochem Syst Ecol 33:855–87

    Chemical composition and antigenotoxic properties of Lippia alba essential oils

    Get PDF
    The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs) from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS) analysis. The major compounds encountered being citral (33% geranial and 25% neral), geraniol (7%) and trans-β-caryophyllene (7%) for L. alba specimen COL512077, and carvone (38%), limonene (33%) and bicyclosesquiphellandrene (8%) for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene) showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds

    Candidiasis, Bacterial Vaginosis, Trichomoniasis and Other Vaginal Conditions Affecting the Vulva

    Get PDF
    info:eu-repo/semantics/publishedVersio
    corecore