117 research outputs found

    Seasonal shifts in the movement and distribution of green sea turtles Chelonia mydas in response to anthropogenically altered water temperatures

    Get PDF
    Anthropogenically altered water temperatures (AAWT) have the potential to affect the movement and distribution of marine ectothermic species. Green sea turtles (GSTs) Chelonia mydas are an ectothermic species observed inhabiting 2 sites with AAWT at the northern point of their geographical range in the eastern Pacific. An acoustic receiver array was deployed with temperature loggers at the San Gabriel River, Long Beach, CA, where 2 power plants discharge warm water into the river, and at the 7th St. Basin, Seal Beach, CA, a dredged shallow basin with warmer water compared to surrounding coastal habitats during the summer months. Juvenile GSTs (n = 22, straight carapace length = 45.2 to 96.8 cm) were tagged with acoustic transmitters. Turtles in the basin migrated into the river during winter months when temperatures dropped below 15°C. During the winter, turtles were most frequently detected at the river receiver stations adjacent to and downstream of the power plants. This suggests that GSTs use the warm effluent as a thermal refuge, avoiding colder areas upstream of the power plants and near the river mouth. In the summer, turtles were most frequently detected at receiver stations upstream of the power plants, potentially exploiting areas of the river with higher primary productivity. AAWT sustain the northernmost aggregation of GSTs in the eastern Pacific year round; however, based on GST thermal tolerance, this population is expected to change their movement patterns when the power plants discontinue discharging warm water by 2029

    Small-scale fisheries of Peru: a major sink for marine turtles in the Pacific

    Get PDF
    1. Over the last few decades, evidence of marine vertebrate bycatch has been collected for a range of industrial fisheries. It has recently been acknowledged that large impacts may also result from similar interactions with small-scale fisheries (SSF) due largely to their diffuse effort and large number of vessels in operation. Marine mammals, seabirds, turtles as well as some shark species have been reported as being impacted by SSF worldwide. 2. From 2000 to 2007, we used both shore-based and onboard observer programmes from three SSF ports in Peru to assess the impact on marine turtles of small-scale longline, bottom set nets and driftnet fisheries. 3. We reported a total of 807 sea turtles captured, 91Æ8% of which were released alive. For these three sites alone, we estimated c. 5900 turtles captured annually (3200 loggerhead turtles Caretta caretta, 2400 green turtles Chelonia mydas, 240 olive ridleys Lepidochelys olivacea and 70 leatherback turtles Dermochelys coriacea). 4. SSF in Peru are widespread and numerous (\u3e100 ports, \u3e9500 vessels, \u3e37 000 fishers), and our observed effort constituted c. 1% of longline and net deployments. We suggest that the number of turtles captured per year is likely to be in the tens of thousands. Thus, the impacts of Peruvian SSF have the potential to severely impact sea turtles in the Pacific especially green, loggerhead and leatherback turtles. 5. Implications of the human use of turtle products as ‘marine bushmeat’ are also raised as an important issue. Although such utilization is illegal, it is difficult to foresee how it can be managed without addressing the constraints to the livelihoods of those depending almost entirely on coastal resources. 6. Syntheses and applications. Our analysis demonstrates that, despite logistical challenges, it is feasible to estimate the bycatch per unit of effort in SSF by combining methods that account for fishing effort and bycatch, such as using onboard and shore-based observers. We highlight sea turtle bycatch in SSF in the southeast Pacific as a major conservation concern but also suggest possible paths for mitigation

    Habitat use and behavior of the east Pacific green turtle, Chelonia mydas in an urbanized system

    Get PDF
    Green sea turtles, Chelonia mydas, are known to inhabit populated and often urbanized areas. To understand turtle habitat use and behavior within these unique habitats, seven juvenile green turtles were fitted with acoustic transmitters (September 2012 – August 2014), of which two transmitters included an accelerometer (AP transmitter). One individual fitted with an AP transmitter was tracked using a passive acoustic array in an urbanized river, the San Gabriel River, Long Beach, CA (33°45’ N, 118°05’ W). Three additional turtles in this river and three turtles (one with AP transmitter) in a restored estuary (33°44’ N, 118°03’ W) in southern California were actively tracked for two non-consecutive 24-h periods. Those fitted with AP transmitters indicated that turtles were less active at night (0.58 ± 0.56 m/s2 and 0.50 ± 0.63 m/s2) than during the day (0.86 ± 0.63 m/s2 and 0.78 ± 0.60 m/s2) at both sites. Activity data and corresponding movements of the actively tracked turtle fitted with the AP transmitter were used to infer resting periods for other tracked individuals. Turtles rested near bridge pilings and runoff outflows in the river to potentially shelter from tidal flow. Turtles used significantly larger daily areas in the urbanized river (0.046 ± 0.023 km2) where resources may be patchier and less abundant, compared to turtles in the estuary (0.024 ± 0.012 km2) where large, dense eelgrass beds are present. Based on the habitat use and behaviors of green sea turtles, it appears that some green sea turtles are able to make use of both highly developed and restored habitats and likely benefit from certain aspects of development

    Intraspecific variation of the green turtle, chelonia mydas (cheloniidae), in the foraging area of gorgona natural national park (colombian pacific)

    Get PDF
    The size distribution and body condition of the two morphotypes of green turtle (Chelonia mydas) foraging in Gorgona Natural National Park (GNNP) in the Colombian Pacific was assessed from 2003 to 2012. Measurements of straight carapace length (SCL), curved carapace length (CCL), weight, and body condition of 1,023 turtles captured on the GNNP reefs were recorded. More black turtles (n = 747) than yellow turtles (n = 276) were captured, all of them juveniles. Black turtles were significantly larger and heavier than yellow turtles. The size of recruitment to the neritic zone was 40.0-49.9 cm SCL for both morphotypes, but there were more yellow than black turtles in this size class, indicating a difference in the recruitment pattern. The body condition index of yellow turtles was significantly higher than that of black turtles, which could indicate differences in resource use. Based on our results, we suggest that GNNP might function as a recruitment area for yellow turtles, which arrive at smaller sizes and as part of a coastal migratory route for black turtles, which arrive at larger sizes and maintain residence at this location for an unknown period of time.Variación intraespecífica de la tortuga verde Chelonia mydas (Cheloniidae) en el área de forrajeo del Parque Nacional Natural Gorgona (Pacífico colombiano)Se comparó la distribución de tallas y condición corporal de los dos morfotipos conocidos de tortuga verde (Chelonia mydas) en el área de forrajeo del Parque Nacional Natural Gorgona (PNNG) en el Pacífico colombiano entre 2003 y 2012. Se tomaron medidas de largo recto de caparazón (LRC), largo curvo de caparazón (LCC), peso y condición corporal de 1.023 tortugas capturadas en los arrecifes del PNG. Se capturaron más tortugas negras (n = 747) que amarillas (n = 276), todas juveniles. Las tortugas negras fueron significativamente más grandes y pesadas que las amarillas. El tamaño de reclutamiento a la zona nerítica fue de 40,0–49,9 cm para ambos morfotipos, pero hubo más tortugas amarillas que negras en este intervalo de tamaños, lo cual sugiere una variación en el patrón de reclutamiento. El índice de condición corporal de las tortugas amarillas fue significativamente más alto que el de las tortugas negras, lo cual podría indicar diferencias en la utilización de recursos. Con base en los resultados obtenidos, se sugiere que el PNNG podría funcionar como un área de reclutamiento para las tortugas amarillas, las cuales llegan más pequeñas a esta zona; y como parte de la ruta migratoria costera de las tortugas negras, las cuales llegan más grandes e incluso residen en esta localidad durante un lapso de tiempo desconocido

    Intraspecific variation of the green turtle, chelonia mydas (cheloniidae), in the foraging area of gorgona natural national park (colombian pacific)

    Get PDF
    The size distribution and body condition of the two morphotypes of green turtle (Chelonia mydas) foraging in Gorgona Natural National Park (GNNP) in the Colombian Pacific was assessed from 2003 to 2012. Measurements of straight carapace length (SCL), curved carapace length (CCL), weight, and body condition of 1,023 turtles captured on the GNNP reefs were recorded. More black turtles (n = 747) than yellow turtles (n = 276) were captured, all of them juveniles. Black turtles were significantly larger and heavier than yellow turtles. The size of recruitment to the neritic zone was 40.0-49.9 cm SCL for both morphotypes, but there were more yellow than black turtles in this size class, indicating a difference in the recruitment pattern. The body condition index of yellow turtles was significantly higher than that of black turtles, which could indicate differences in resource use. Based on our results, we suggest that GNNP might function as a recruitment area for yellow turtles, which arrive at smaller sizes and as part of a coastal migratory route for black turtles, which arrive at larger sizes and maintain residence at this location for an unknown period of time.Variación intraespecífica de la tortuga verde Chelonia mydas (Cheloniidae) en el área de forrajeo del Parque Nacional Natural Gorgona (Pacífico colombiano)Se comparó la distribución de tallas y condición corporal de los dos morfotipos conocidos de tortuga verde (Chelonia mydas) en el área de forrajeo del Parque Nacional Natural Gorgona (PNNG) en el Pacífico colombiano entre 2003 y 2012. Se tomaron medidas de largo recto de caparazón (LRC), largo curvo de caparazón (LCC), peso y condición corporal de 1.023 tortugas capturadas en los arrecifes del PNG. Se capturaron más tortugas negras (n = 747) que amarillas (n = 276), todas juveniles. Las tortugas negras fueron significativamente más grandes y pesadas que las amarillas. El tamaño de reclutamiento a la zona nerítica fue de 40,0–49,9 cm para ambos morfotipos, pero hubo más tortugas amarillas que negras en este intervalo de tamaños, lo cual sugiere una variación en el patrón de reclutamiento. El índice de condición corporal de las tortugas amarillas fue significativamente más alto que el de las tortugas negras, lo cual podría indicar diferencias en la utilización de recursos. Con base en los resultados obtenidos, se sugiere que el PNNG podría funcionar como un área de reclutamiento para las tortugas amarillas, las cuales llegan más pequeñas a esta zona; y como parte de la ruta migratoria costera de las tortugas negras, las cuales llegan más grandes e incluso residen en esta localidad durante un lapso de tiempo desconocido

    Loggerhead Turtles (Caretta caretta) in the California Current: Abundance, Distribution, and Anomalous Warming of the North Pacific

    Get PDF
    Environmental variability affects distributions of marine predators in time and space. With expected changes in the ocean climate, understanding the relationship between species distributions and the environment is essential for developing successful management regulations. Here we provide information on an ephemeral but important habitat for North Pacific loggerhead turtles (Caretta caretta) at the northeastern edge of their range. North Pacific loggerhead turtles nest on Japanese beaches and juveniles disperse throughout the North Pacific; some remain in the high seas of the central North Pacific whereas others transition to the eastern Pacific and forage near Baja California, Mexico. Loggerheads have also been reported along the United States west coast, with the majority of sightings off southern California. Here we describe their demography and distribution in the area, based on two aerial surveys (2011, 2015), at-sea sightings, and stranding records. Our aerial survey during fall 2015 determined density, abundance, and distribution of loggerheads in the area, when anomalous warming of the North Pacific and El Niño conditions co-occurred. Using line-transect analysis, we estimated ca. 15,000 loggerheads at the sea surface (CV = 21%) and more than 70,000 loggerheads when accounting for those that were submerged and not available for detection. Our survey during fall 2011 resulted in no loggerhead sightings, demonstrating a high variability of loggerhead density in the region. We encourage further research on loggerheads in the area to determine the mechanisms that promote their occurrence. These studies should include regular surveys throughout their foraging areas along the west coast of the North America as well as assessments of prey availability and local oceanographic conditions
    corecore