22 research outputs found

    Enzalutamide as a second generation antiandrogen for treatment of advanced prostate cancer

    Get PDF
    Prostate cancer (PCa) is the most common malignancy, and the third leading cancer-related cause of death among men of the Western world. Upon PCa progression into metastatic disease, androgen deprivation therapy is applied as the first-line treatment, and has been shown to be effective in most patients, leading to a decrease in serum prostate-specific antigen and relief of disease-related symptoms. However, advanced PCa almost inevitably progresses to a castration-resistant state, and is currently regarded as incurable. The large body of evidence indicates that PCa cells remain dependent on androgen receptor (AR) signaling even in an androgen-deprived environment. As such, development of drugs that target AR and AR signaling pathways have become one of the major milestones in treatment of castration-resistant PCa (CRPC). Nevertheless, currently available therapies that target AR signaling are still regarded as palliative and more potent therapies are in great need. Over the past few years, a wide range of novel therapies has entered clinical trial for treatment of CRPC, including androgen synthesis inhibitors (abiraterone acetate), chemotherapeutic agents (docetaxel and cabazitaxel), and immunotherapies (sipuleucel-T). In this context, enzalutamide (previously referred to as MDV3100) is a novel second generation antiandrogen that has been demonstrated to significantly improve survival in men with metastatic CRPC in several clinical trials. In this paper we summarize recently completed and ongoing clinical trials of enzalutamide, and briefly discuss the efficacy of the novel antiandrogen therapy and its limitations for treatment of CRPC

    Overcoming Drug Resistance and Treating Advanced Prostate Cancer.

    Get PDF
    Most of the prostate cancers (PCa) in advanced stage will progress to castration-resistant prostate cancer (CRPC). Within CRPC group, 50-70% of the patients will develop bone metastasis in axial and other regions of the skeleton. Once PCa cells spread to the bone, currently, no treatment regimens are available to eradicate the metastasis, and cancer- related death becomes inevitable. In 2012, it is estimated that there will be 28,170 PCa deaths in the United States. Thus, PCa bone metastasis-associated clinical complications and treatment resistance pose major clinical challenges. In this review, we will present recent findings on the molecular and cellular pathways that are responsible for bone metastasis of PCa. We will address several novel mechanisms with a focus on the role of bone and bone marrow microenvironment in promoting PCa metastasis, and will further discuss why prostate cancer cells preferentially metastasize to the bone. Additionally, we will discuss novel roles of several key pathways, including angiogenesis and extracellular matrix remodeling in bone marrow and stem cell niches with their relationship to PCa bone metastasis and poor treatment response. We will evaluate how various chemotherapeutic drugs and radiation therapies may allow aggressive PCa cells to gain advantageous mutations leading to increased survival and rendering the cancer cells to become resistant to treatment. The novel concept relating several key survival and invasion signaling pathways to stem cell niches and treatment resistance will be reviewed. Lastly, we will provide an update of several recently developed novel drug candidates that target metastatic cancer microenvironments or niches, and discuss the advantages and significance provided by such therapeutic approaches in pursuit of overcoming drug resistance and treating advanced PCa

    Interaction between c-jun and Androgen Receptor Determines the Outcome of Taxane Therapy in Castration Resistant Prostate Cancer

    Get PDF
    Taxane based chemotherapy is the standard of care treatment in castration resistant prostate cancer (CRPC). There is convincing evidence that taxane therapy affects androgen receptor (AR) but the exact mechanisms have to be further elucidated. Our studies identified c-jun as a crucial key player which interacts with AR and thus determines the outcome of the taxane therapy given. Docetaxel (Doc) and paclitaxel (Pac) agents showed different effects on LNCaP and LNb4 evidenced by alteration in the protein and mRNA levels of c-jun, AR and PSA. Docetaxel-induced phophorylation of c-jun occurred before JNK phosphorylation which suggests that c-jun phosphorylation is independent of JNK pathways in prostate cancer cells. A xenograft study showed that mice treated with Pac and bicalutamide showed worse outcome supporting our hypothesis that upregulation of c-jun might act as a potent antiapoptotic factor. We observed in our in vitro studies an inverse regulation of PSA- and AR-mRNA levels in Doc treated LNb4 cells. This was also seen for kallikrein 2 (KLK 2) which followed the same pattern. Given the fact that response to taxane therapy is measured by PSA decrease we have to consider that this might not reflect the true activity of AR in CRPC patients

    Cyclin A1 and P450 aromatase promote metastatic homing and growth of stem-like prostate cancer cells in the bone marrow

    Get PDF
    Bone metastasis is a leading cause of morbidity and mortality in prostate cancer (PCa). While cancer stem-like cells have been implicated as a cell of origin for PCa metastases, the pathways which enable metastatic development at distal sites remain largely unknown. In this study, we illuminate pathways relevant to bone metastasis in this disease. We observed that cyclin A1 (CCNA1) protein expression was relatively higher in PCa metastatic lesions in lymph node, lung, and bone/bone marrow. In both primary and metastatic tissues, cyclin A1 expression was also correlated with aromatase (CYP19A1), a key enzyme that directly regulates the local balance of androgens to estrogens. Cyclin A1 overexpression in the stem-like ALDHhigh subpopulation of PC3M cells, one model of PCa, enabled bone marrow integration and metastatic growth. Further, cells obtained from bone marrow metastatic lesions displayed self-renewal capability in colony forming assays. In the bone marrow, Cyclin A1 and aromatase enhanced local bone marrow-releasing factors, including androgen receptor, estrogen and matrix metalloproteinase MMP9 and promoted hte metastatic growth of PCa cells. Moreover, ALDHhigh tumor cells expressing elevated levels of aromatase stimulated tumor/host estrogen production and acquired a growth advantage in the presence of host bone marrow cells. Overall, these findings suggest that local production of steroids and MMPs in the bone marrow may provide a suitable microenvironment for ALDHhigh PCa cells to establish metastatic growths, offering new approaches to therapeutically target bone metastases

    A Novel Radiographic Pattern Related to Poor Prognosis in Patients with Prostate Cancer with Metastatic Spinal Cord Compression

    No full text
    Background: Prostate cancer spinal bone metastases can have a radiographic profile that mimics multiple myeloma. Objective: To analyse the presence and prognostic value of myeloma-like prostate cancer bone metastases and its relation to known clinical, molecular, and morphological prognostic markers. Design, setting, and participants: A cohort of 110 patients with prostate cancer who underwent surgery for metastatic spinal cord compression (MSCC) was analysed. Spinal bone metastases were classified as myeloma like (n = 20) or non–myeloma like (n = 90) based on magnetic resonance imaging prior to surgery. An immunohistochemical analysis of metastasis samples was performed to assess tumour cell proliferation (percentage of Ki67-positive cells) and the expression levels of prostate-specific antigen (PSA) and androgen receptor (AR). The metastasis subtypes MetA, MetB, and MetC were determined from transcriptomic profiling. Outcome measurements and statistical analysis: Survival curves were compared with the log-rank test. Univariate and multivariate Cox proportional hazard models were used to assess the effects of prognostic variables. Groups were compared using the Mann-Whitney U test for continuous variables and the chi-square test for categorical variables. Results and limitations: Patients with the myeloma-like metastatic pattern had median survival after surgery for MSCC of 1.7 (range 0.1–33) mo, while the median survival period of those with the non–myeloma-like pattern was 13 (range 0–140) mo (p < 0.001). The myeloma-like appearance had an independent prognostic value for the risk of death after MSCC surgery (adjusted hazard ratio 2.4, p = 0.012). Postoperative neurological function was significantly reduced in the myeloma-like group. No association was found between the myeloma-like pattern and morphological markers of known relevance for this patient group: the transcriptomic subtypes MetA, MetB, and MetC; tumour cell proliferation; and AR and PSA expression. Conclusions: A myeloma-like metastatic pattern identifies an important subtype of metastatic prostate cancer associated with poor survival and neurological outcomes after surgery for MSCC. Patient summary: This study describes a novel radiographic pattern of prostate cancer bone metastases and its relation to poor patient prognosis

    The interplay between AR, EGF receptor and MMP-9 signaling pathways in invasive prostate cancer

    No full text
    Background: Metastatic Prostate cancer (PCa) cells have gained survival and invasive advantages. Epidermal growth factor (EGA) receptor is a receptor tyrosine kinase, which may mediate signalling to promote progression and invasion of various cancers. In this study, we uncovered the molecular mechanisms underlying the interconnection among the androgen receptor (AR), matrix metalloproteinase-9 (MMP9) and EGFR in promoting PCa progression. Methods: Immunohistochemical analysis of the tissue microarrays consisting of primary and metastatic PCa tissues was performed. The clinical importance of EGFR and its association with survivals were analyzed using three cohorts from MSKCC Prostate Oncogenome Project dataset (For primary tumors, n = 181; for metastatic tumors n = 37) and The Cancer Genome Atlas Prostate Adenocarcinoma Provisional dataset (n = 495). Targeted overexpression or inhibition of the proteins of interests was introduced into PCa cell lines. Treatment of PCa cell lines with the compounds was conducted. Immunoblot analysis was performed. Results: We showed that AR, MMP-9 and EGFR are interconnect factors, which may cooperatively promote PCa progression. Altered EGFR expression was associated with poor disease-free survival in PCa patients. Induced overexpression of AR led to an increase in the expression of EGFR, p-GSK-313 and decrease in p27 expression in PCa cell lines in the presence of androgen stimulation. Overexpression of MMP9 significantly induced EGFR expression in PCa cells. Inhibition of PIP5K1a, a lipid kinase that acts upstream of PI3K/AKT greatly reduced expressions of AR, MMP-9 and EGFR. Conclusions: Our findings also suggest that PCa cells may utilize AR, EGFR and MMP-9 pathways in androgen-dependent as well as in castration-resistant conditions. Our data suggest a new therapeutic potential to block cancer metastasis by targeting AR, EGFR and MMP-9 pathways in subsets of PCa patients

    Tumor growth graphs and immunohistochemical analysis of dissected tumors from NMRI-nude mice bearing implanted LNCaP cells.

    No full text
    <p>(A) Growth curve of mice treated with Doc or Pac alone, Doc vs ctr (p=0.04). (B) Corresponding immunohistochemical staining of tumor tissue. (C) Growth curve of mice with combined treatment, Doc/bicalutamide (Bic) vs Pac/Bic (p=0.003). (D) Corresponding immunohistochemical staining of tumor tissue. Note that p-cjun was differentially expressed in mice treated with Doc and Pac. Ki67 expression was higher in Pac compared to Doc treated mice. </p
    corecore