33 research outputs found

    Rôle de l’enzyme PAS kinase dans la régulation du facteur de transcription PDX-1 dans la cellule bêta pancréatique

    Full text link
    Le diabète de type 2 (DT2) se caractérise par une production insuffisante d'insuline par le pancréas ainsi qu'une résistance des tissus périphériques à l'action de l'insuline. Dans les cellules bêta pancréatiques, le glucose stimule la production de l'insuline en induisant la transcription de son gène et la traduction ainsi que la sécrétion de sa protéine. Paradoxalement, une exposition prolongée et simultanée de ces cellules à de hautes concentrations de glucose en présence d'acides gras conduit à la détérioration de la fonction bêta pancréatique et au développement du DT2. Toutefois, les mécanismes moléculaires responsables de ces effets du glucose ne sont que partiellement connus. L'objectif du travail décrit dans cette thèse est d'identifier les mécanismes responsables de la régulation de la transcription du gène de l'insuline. PDX-1 (de l’anglais pour pancreatic and duodenal homeobox 1) est un facteur de transcription majeur et essentiel tant pour le développement du pancréas que pour le maintien de sa fonction à l'état adulte. En réponse au glucose, PDX-1 se lie au promoteur du gène de l'insuline et induit sa transcription. Ceci est inhibé par l'acide gras palmitate. Dans la première partie des travaux effectués dans le cadre de cette thèse, nous avons identifié deux mécanismes de régulation de la transcription du gène de l'insuline: le premier via ERK1/2 (de l'anglais pour extracellular-signal-regulated protein kinases 1 and 2) et le second par l’enzyme PASK (pour per-arnt-sim kinase). Nous avons également mis en évidence l'existence d'un troisième mécanisme impliquant l'inhibition de l'expression du facteur de transcription MafA par le palmitate. Nos travaux indiquent que la contribution de la signalisation via PASK est majeure. L'expression de PASK est augmentée par le glucose et inhibée par le palmitate. Sa surexpression dans les cellules MIN6 et les îlots isolés de rats, mime les effets du glucose sur l'expression du gène de l'insuline ainsi que sur l'expression de PDX-1 et prévient les effets délétères du palmitate. Dans la deuxième partie de la thèse, nous avons identifié un nouveau mécanisme par lequel PASK augmente la stabilité protéique de PDX-1, soit via la phosphorylation et l'inactivation de la protéine kinase GSK3 bêta (de l'anglais pour glycogen synthase kinase 3 beta). Le glucose induit la translocation de PDX-1 du cytoplasme vers le noyau, ce qui est essentiel à sa liaison au promoteur de ses gènes cibles. L'exclusion nucléaire de PDX-1 a été observée dans plusieurs modèles ex vivo et in vivo de dysfonction de la cellule bêta pancréatique. Dans le dernier volet de cette thèse, nous avons démontré l'importance de l'utilisation de cellules primaires (îlots isolés et dispersés) pour étudier la translocation nucléaire de PDX-1 endogène étant donné que ce mode de régulation est absent dans les lignées insulino-sécrétrices MIN6 et HIT-T15. Ces études nous ont permis d'identifier et de mieux comprendre les mécanismes régulant la transcription du gène de l'insuline via le facteur de transcription PDX-1. Les cibles moléculaires ainsi identifiées pourraient contribuer au développement de nouvelles approches thérapeutiques pour le traitement du diabète de type 2. Mots-clés : Diabète, îlots de Langerhans, cellule bêta pancréatique, gène de l'insuline, PDX-1, PASK, GSK3 bêta, ERK1/2, PKB, glucose, palmitate.Type 2 diabetes (T2D) is characterized by an impaired insulin secretion from the pancreas and a peripheral insulin resistance. In pancreatic beta cells, glucose stimulates insulin production by inducing its gene transcription, translation and secretion. Chronic and simultaneous exposure of pancreatic beta cells to elevated glucose concentrations in the presence of fatty acids lead to the deterioration of their function and the development T2D. However, the molecular mechanisms underlying this regulation are not completely known. The aim of this thesis is to identify the mechanisms involved in the regulation of insulin gene transcription. PDX-1 is a major transcription factor that is essential for the development and function of the pancreas. In response to glucose, PDX-1 binds to the insulin gene promoter and triggers its transcription. This is inhibited by the fatty acid palmitate. In the first study, we identified two mechanisms of regulation of insulin gene transcription. An ERK1/2 (extracellular-signal-regulated kinase 1 and 2)- and a PASK (Per-Arnt-Sim kinase)-mediated pathways. We also show evidence of a third mechanism that involves inhibition of the expression of the transcription factor MafA by palmitate. Our data indicate that PASK-mediated regulation of insulin gene transcription is a major pathway. PASK expression is induced by glucose and inhibited palmitate. Its overexpression in MIN6 cells and isolated rat islet mimics the effect of glucose on both insulin gene transcription and PDX-1 expression and it prevents the inhibitory effects of palmitate. In the second part of this work, we identified a novel role of PASK in the pancreatic beta cell, by which it promotes PDX-1 protein stability, via phosphorylation and inactivation of GSK3 beta (glycogen synthase kinase 3 beta). Glucose induces PDX-1 nuclear translocation which is required for its binding to the promoter of its target genes. Nuclear exclusion of PDX-1 has been observed in both ex vivo and in vivo models of beta cell dysfunction. Here, we demonstrate the importance of using isolated islets to study endogenous PDX-1 nuclear translocation as this regulation is absent in the insulin secreting cell lines MIN6 and HIT-T15. This work has led us to identify and better understand the mechanisms of regulation of insulin gene transcription via PDX-1. The molecular targets herein identified, may contribute to the development of new therapeutic approaches T2D treatment. Keywords : Diabetes, islets of Langerhans, pancreatic beta cells, insulin gene, PDX-1, PASK, GSK3 beta, ERK1/2, PKB, glucose, palmitate

    Caractérisation de l'adipogenèse et des voies de la lipolyse dans les cellules adipocytaires normales et déficientes en lipases

    Get PDF
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    Lipopolysaccharides Impair Insulin Gene Expression in Isolated Islets of Langerhans via Toll-Like Receptor-4 and NF-κB Signalling

    Get PDF
    BACKGROUND:Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. In this study, we tested the hypothesis that LPS alters insulin gene expression via TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in islets. METHODOLOGY/PRINCIPAL FINDINGS:A 24-h exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of pancreas-duodenum homebox-1 (PDX-1) and mammalian homologue of avian MafA/l-Maf (MafA). Accordingly, LPS exposure also decreased glucose-induced insulin secretion. LPS repression of insulin, PDX-1 and MafA expression, as well as its inhibition of insulin secretion, were not observed in islets from TLR4-deficient mice. LPS inhibition of β-cell gene expression in rat islets was prevented by inhibition of the NF-κB pathway, but not the p38 mitogen-activated protein kinase (p38 MAPK) pathway. CONCLUSIONS/SIGNIFICANCE:Our findings demonstrate that LPS inhibit β-cell gene expression in a TLR4-dependent manner and via NF-κB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function

    PAX4 preserves endoplasmic reticulum integrity preventing beta cell degeneration in a mouse model of type 1 diabetes mellitus

    Get PDF
    Mellado-Gil, José Manuel et al.[Aims/hypothesis]: A strategy to enhance pancreatic islet functional beta cell mass (BCM) while restraining inflammation, through the manipulation of molecular and cellular targets, would provide a means to counteract the deteriorating glycaemic control associated with diabetes mellitus. The aims of the current study were to investigate the therapeutic potential of such a target, the islet-enriched and diabetes-linked transcription factor paired box 4 (PAX4), to restrain experimental autoimmune diabetes (EAD) in the RIP-B7.1 mouse model background and to characterise putative cellular mechanisms associated with preserved BCM. [Methods]: Two groups of RIP-B7.1 mice were genetically engineered to: (1) conditionally express either PAX4 (BPTL) or its diabetes-linked mutant variant R129W (mutBPTL) using doxycycline (DOX); and (2) constitutively express luciferase in beta cells through the use of RIP. Mice were treated or not with DOX, and EAD was induced by immunisation with a murine preproinsulin II cDNA expression plasmid. The development of hyperglycaemia was monitored for up to 4 weeks following immunisation and alterations in the BCM were assessed weekly by non-invasive in vivo bioluminescence intensity (BLI). In parallel, BCM, islet cell proliferation and apoptosis were evaluated by immunocytochemistry. Alterations in PAX4- and PAX4R129W-mediated islet gene expression were investigated by microarray profiling. PAX4 preservation of endoplasmic reticulum (ER) homeostasis was assessed using thapsigargin, electron microscopy and intracellular calcium measurements. [Results]: PAX4 overexpression blunted EAD, whereas the diabetes-linked mutant variant PAX4R129W did not convey protection. PAX4-expressing islets exhibited reduced insulitis and decreased beta cell apoptosis, correlating with diminished DNA damage and increased islet cell proliferation. Microarray profiling revealed that PAX4 but not PAX4R129W targeted expression of genes implicated in cell cycle and ER homeostasis. Consistent with the latter, islets overexpressing PAX4 were protected against thapsigargin-mediated ER-stress-related apoptosis. Luminal swelling associated with ER stress induced by thapsigargin was rescued in PAX4-overexpressing beta cells, correlating with preserved cytosolic calcium oscillations in response to glucose. In contrast, RNA interference mediated repression of PAX4-sensitised MIN6 cells to thapsigargin cell death. [Conclusions/interpretation]: The coordinated regulation of distinct cellular pathways particularly related to ER homeostasis by PAX4 not achieved by the mutant variant PAX4R129W alleviates beta cell degeneration and protects against diabetes mellitus. The raw data for the RNA microarray described herein are accessible in the Gene Expression Omnibus database under accession number GSE62846.This work was funded by grants from the Consejeria de Salud, Fundacion Publica Andaluza Progreso y Salud, Junta de Andalucia (PI-0727-2010 to BRG and PI-0085-2013 to PIL), Consejeria de Economia, Innovacion y Ciencia (P10.CTS.6359 to BRG), Ministerio de Ciencia e Innovacion (BFU2013-42789-P to IQ) and the Ministerio de Economia y Competidividad, Instituto de Salud Carlos III co-funded by Fondos FEDER (PI10/00871 and PI13/00593 to BRG). NC-V is supported by a JDRF subsidy (17-2013-372 to BRG.). AM-M is a recipient of a Miguel Servet grant (CP14/00105) from the Instituto de Salud Carlos III co-funded by Fondos FEDER and EF-M is a recipient of a Juan de la Cierva Fellowship. PM is supported by Swiss National Science Foundation grant 310030-141162, and the European Union grant IMIDIA, C2008-T7. BOB is supported by grants from the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.Peer Reviewe

    Le cadre hospitalier, nouvel acteur des ressources humaines?

    No full text
    International audienc

    Le cadre hospitalier, nouvel acteur des ressources humaines?

    No full text
    International audienc
    corecore