44 research outputs found

    Recovery and Recycling of Chiral Iridium(N,P Ligand) Catalysts from Hydrogenation Reactions

    Get PDF
    Despite the high efficiency and broad scope of chiral iridium(N,P ligand) complexes as catalysts for asymmetric hydrogenation, the problem of catalyst recovery and recycling has so far attracted little attention. We have found that at the end of a hydrogenation reaction, iridium(N,P ligand) catalysts form dimeric Ir(III) dihydride complexes, which can be converted back to the original precatalysts by addition of COD. Based on these findings, a practically simple protocol for catalyst recovery was devised. The recovered complexes showed essentially the same reactivity and enantioselectivity as the original catalysts. Especially large-scale applications and hydrogenations of less reactive substrates that require high catalyst loadings will benefit from this protocol that allows recovery and reuse of expensive iridium complexes

    Reactions of (polypyrazolylborato)(benzonitrile)rutheniums with terminal alkynes: Reactivity changeover by triethylamine toward arylalkyne polymerization or formation of (arylmethyl)(carbonyl) complexes

    Get PDF
    Reactions of (κ 3-polypyrazolylborato)(benzonitrile) rutheniums [RuCl{B(4-Ypz) 4}(PhCN) 2] {4-Ypz; 4-bromo-1-pyrazolyl (Y = Br) and 1-pyrazolyl (Y = H) groups} with terminal alkynes were studied. For the reactions with arylalkynes HC≡C(aryl) in the presence of NEt 3, (arylmethyl)(carbonyl)rutheniums [Ru{CH 2(aryl)}{B(4-Ypz) 4}(CO)(PhCN)] were yielded, indicating alkyne C≡C bond cleavage, whereas in the absence of NEt 3, arylalkyne polymerization proceeded instead of the (arylmethyl)ruthenium formation. Reasonably attributed reaction mechanism shows significant role of the vinylidene intermediates "Ru=C=CH(aryl)"

    Asymmetric hydrogenation with iridium C,N and N,P ligand complexes : characterization of dihydride intermediates with a coordinated alkene

    No full text
    Previously elusive iridium dihydride alkene complexes have been identified and characterized by NMR spectroscopy in solution. Reactivity studies demonstrated that these complexes are catalytically competent intermediates. Additional H2 is required to convert the catalyst-bound alkene into the hydrogenation product, supporting an Ir(III) /Ir(V) cycle via an [Ir(III) (H)2 (alkene)(H2 )(L)](+) intermediate, as originally proposed based on DFT calculations. NMR analyses indicate a reaction pathway proceeding through rapidly equilibrating isomeric dihydride alkene intermediates with a subsequent slow enantioselectivity-determining step. As in the classical example of asymmetric hydrogenation with rhodium diphosphine catalysts, it is a minor, less stable intermediate that is converted into the major product enantiomer
    corecore